def test_sequential_model_save_load_without_input_shape( self, tmpdir, api, loss, optimizer, metrics): if optimizer is None or loss != keras.losses.MSE: pytest.skip() model = keras.models.Sequential() model.add(keras.layers.Dense(2)) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model.compile( loss=loss, optimizer=optimizer, metrics=metrics, weighted_metrics=metrics, sample_weight_mode="temporal", ) data_x = np.random.random((1, 3)) data_y = np.random.random((1, 3, 3)) model.train_on_batch(data_x, data_y) tiledb_uri = os.path.join(tmpdir, "model_array") tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True) loaded_model = tiledb_model_obj.load(compile_model=True) # Assert model predictions are equal np.testing.assert_array_equal(loaded_model.predict(data_x), model.predict(data_x))
def test_save_model_to_tiledb_array_predictions(self, tmpdir, api, loss, optimizer, metrics): model = (api(num_hidden=1, num_classes=2, input_dim=3) if api != ConfigSubclassModel else api( hidden_units=[16, 16, 10])) tiledb_uri = os.path.join(tmpdir, "model_array") # Compiles the model if optimizer is present if optimizer: model.compile(loss=loss, optimizer=optimizer, metrics=[metrics]) input_shape = tuple(np.random.randint(20, size=2)) if not model.built: model.build(input_shape) tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True if optimizer else False) loaded_model = (tiledb_model_obj.load( compile_model=False, custom_objects={"ConfigSubclassModel": ConfigSubclassModel}, input_shape=input_shape, ) if api == ConfigSubclassModel else tiledb_model_obj.load( compile_model=False)) data = np.random.rand( 100, input_shape[-1] if api == ConfigSubclassModel else 3) # Assert model predictions are equal np.testing.assert_array_equal(loaded_model.predict(data), model.predict(data))
def test_save_load_for_rnn_layers(self, tmpdir, api, loss, optimizer, metrics): inputs = keras.Input([10, 10], name="train_input") rnn_layers = [ keras.layers.LSTMCell(size, recurrent_dropout=0, name="rnn_cell%d" % i) for i, size in enumerate([32, 32]) ] rnn_output = keras.layers.RNN(rnn_layers, return_sequences=True, name="rnn_layer")(inputs) pred_feat = keras.layers.Dense(10, name="prediction_features")(rnn_output) pred = keras.layers.Softmax()(pred_feat) model = keras.Model(inputs=[inputs], outputs=[pred, pred_feat]) tiledb_uri = os.path.join(tmpdir, "model_array") tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=False) loaded_model = tiledb_model_obj.load(compile_model=False) data = np.random.rand(50, 10, 10) # Assert model predictions are equal np.testing.assert_array_equal(loaded_model.predict(data), model.predict(data))
def test_save_load_with_dense_features(self, tmpdir, api, loss, optimizer, metrics): if optimizer is None: pytest.skip() cols = [ feature_column_lib.numeric_column("a"), feature_column_lib.indicator_column( feature_column_lib.categorical_column_with_vocabulary_list( "b", ["one", "two"])), ] input_layers = { "a": keras.layers.Input(shape=(1, ), name="a"), "b": keras.layers.Input(shape=(1, ), name="b", dtype="string"), } fc_layer = dense_features.DenseFeatures(cols)(input_layers) output = keras.layers.Dense(10)(fc_layer) model = keras.models.Model(input_layers, output) model.compile( loss=loss, optimizer=optimizer, metrics=[metrics], ) tiledb_uri = os.path.join(tmpdir, "model_array") tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True) loaded_model = tiledb_model_obj.load(compile_model=True) model_opt_weights = batch_get_value(getattr(model.optimizer, "weights")) loaded_opt_weights = batch_get_value( getattr(loaded_model.optimizer, "weights")) # Assert optimizer weights are equal for weight_model, weight_loaded_model in zip(model_opt_weights, loaded_opt_weights): np.testing.assert_array_equal(weight_model, weight_loaded_model) inputs_a = np.arange(10).reshape(10, 1) inputs_b = np.arange(10).reshape(10, 1).astype("str") # Assert model predictions are equal np.testing.assert_array_equal( loaded_model.predict({ "a": inputs_a, "b": inputs_b }), model.predict({ "a": inputs_a, "b": inputs_b }), )
def test_exception_raise_file_property_in_meta_error(self, tmpdir): model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=(10, 10))) tiledb_array = os.path.join(tmpdir, "model_array") tiledb_obj = TensorflowKerasTileDBModel(uri=tiledb_array, model=model) with pytest.raises(ValueError) as ex: tiledb_obj.save(meta={ "TILEDB_ML_MODEL_ML_FRAMEWORK": "TILEDB_ML_MODEL_ML_FRAMEWORK" }, ) assert "Please avoid using file property key names as metadata keys!" in str( ex.value)
def test_save_model_to_tiledb_array(self, tmpdir, api, loss, optimizer, metrics): model = (api(num_hidden=1, num_classes=2, input_dim=3) if api != ConfigSubclassModel else api( hidden_units=[16, 16, 10])) tiledb_uri = os.path.join(tmpdir, "model_array") # Compiles the model if optimizer is present if optimizer: model.compile(loss=loss, optimizer=optimizer, metrics=[metrics]) if not model.built: model.build(tuple(np.random.randint(20, size=2))) tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True if optimizer else False) assert tiledb.array_exists(tiledb_uri)
def test_functional_model_save_load_with_custom_loss_and_metric( self, tmpdir, api, loss, optimizer, metrics): if optimizer is None or loss != keras.losses.SparseCategoricalCrossentropy( ): pytest.skip() inputs = keras.Input(shape=(4, )) x = keras.layers.Dense(8, activation="relu")(inputs) outputs = keras.layers.Dense(3, activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=outputs) custom_loss = keras.layers.Lambda(lambda x: keras.backend.sum(x * x))( x) model.add_loss(custom_loss) model.add_metric(custom_loss, aggregation="mean", name="custom_loss") model.compile( loss=loss, optimizer=optimizer, metrics=[metrics], ) data_x = np.random.normal(size=(32, 4)) data_y = np.random.randint(0, 3, size=32) model.train_on_batch(data_x, data_y) tiledb_uri = os.path.join(tmpdir, "model_array") tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True) loaded_model = tiledb_model_obj.load(compile_model=True) # Assert all evaluation results are the same. assert all([ a == pytest.approx(b, 1e-9) for a, b in zip( model.evaluate(data_x, data_y), loaded_model.evaluate(data_x, data_y), ) ]) # Assert model predictions are equal np.testing.assert_array_equal(loaded_model.predict(data_x), model.predict(data_x))
def test_update_file_properties_call(self, tmpdir, mocker): model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=(10, 10))) # Get model summary in a string s = io.StringIO() model.summary(print_fn=lambda x: s.write(x + "\n")) model_summary = s.getvalue() uri = os.path.join(tmpdir, "model_array") mocker.patch("tiledb.ml.models.base.get_cloud_uri", return_value=uri) tiledb_obj = TensorflowKerasTileDBModel(uri=uri, namespace="test_namespace", model=model) mock_update_file_properties = mocker.patch( "tiledb.ml.models.tensorflow_keras.update_file_properties", return_value=None, ) mocker.patch( "tiledb.ml.models.tensorflow_keras.TensorflowKerasTileDBModel._write_array" ) tiledb_obj.save() file_properties_dict = { "TILEDB_ML_MODEL_ML_FRAMEWORK": "TENSORFLOW KERAS", "TILEDB_ML_MODEL_ML_FRAMEWORK_VERSION": tf.__version__, "TILEDB_ML_MODEL_STAGE": "STAGING", "TILEDB_ML_MODEL_PYTHON_VERSION": platform.python_version(), "TILEDB_ML_MODEL_PREVIEW": model_summary, } mock_update_file_properties.assert_called_once_with( uri, file_properties_dict)
def test_save_load_with_sequence_features(self, tmpdir, api, loss, optimizer, metrics): if optimizer is None: pytest.skip() cols = [ feature_column_lib.sequence_numeric_column("a"), feature_column_lib.indicator_column( feature_column_lib. sequence_categorical_column_with_vocabulary_list( "b", ["one", "two"])), ] input_layers = { "a": keras.layers.Input(shape=(None, 1), sparse=True, name="a"), "b": keras.layers.Input(shape=(None, 1), sparse=True, name="b", dtype="string"), } fc_layer, _ = ksfc.SequenceFeatures(cols)(input_layers) x = keras.layers.GRU(32)(fc_layer) output = keras.layers.Dense(10)(x) model = keras.models.Model(input_layers, output) model.compile( loss=loss, optimizer=optimizer, metrics=[metrics], ) tiledb_uri = os.path.join(tmpdir, "model_array") tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model) tiledb_model_obj.save(include_optimizer=True) loaded_model = tiledb_model_obj.load(compile_model=True) model_opt_weights = batch_get_value(getattr(model.optimizer, "weights")) loaded_opt_weights = batch_get_value( getattr(loaded_model.optimizer, "weights")) # Assert optimizer weights are equal for weight_model, weight_loaded_model in zip(model_opt_weights, loaded_opt_weights): np.testing.assert_array_equal(weight_model, weight_loaded_model) batch_size = 10 timesteps = 1 values_a = np.arange(10, dtype=np.float32) indices_a = np.zeros((10, 3), dtype=np.int64) indices_a[:, 0] = np.arange(10) inputs_a = sparse_tensor.SparseTensor(indices_a, values_a, (batch_size, timesteps, 1)) values_b = np.zeros(10, dtype=np.str) indices_b = np.zeros((10, 3), dtype=np.int64) indices_b[:, 0] = np.arange(10) inputs_b = sparse_tensor.SparseTensor(indices_b, values_b, (batch_size, timesteps, 1)) # Assert model predictions are equal np.testing.assert_array_equal( loaded_model.predict({ "a": inputs_a, "b": inputs_b }, steps=1), model.predict({ "a": inputs_a, "b": inputs_b }, steps=1), )