예제 #1
0
def _make_metadata(name):
    from tilequeue.process import make_metadata
    from tilequeue.process import Source
    sources = {
        'osm': Source('osm', 'openstreetmap.org'),
        'ne': Source('ne', 'naturalearthdata.com'),
        'wof': Source('wof', 'whosonfirst.org'),
        'shp': Source('shp', 'openstreetmapdata.com'),
    }
    return make_metadata(sources[name])
예제 #2
0
 def __init__(self, tables, source='test'):
     from tilequeue.process import lookup_source, Source
     self.tables = tables
     # first look up source, in case it's a real one that we're testing.
     # if not, then set it to a test value
     self.source = lookup_source(source) or Source(source, source)
     assert isinstance(self.source, Source)
예제 #3
0
def make_test_metadata():
    from tilequeue.query.fixture import Metadata
    from tilequeue.process import Source
    return Metadata(Source('test', 'test'), [], [])
예제 #4
0
파일: fixture.py 프로젝트: rwrx/tilequeue
    def __call__(self, zoom, unpadded_bounds):
        read_rows = []
        bbox = box(*unpadded_bounds)

        for (fid, shape, props) in self.rows:
            # reject any feature which doesn't intersect the given bounds
            if bbox.disjoint(shape):
                continue

            # copy props so that any updates to it don't affect the original
            # data.
            props = props.copy()

            # TODO: there must be some better way of doing this?
            rels = props.pop('__relations__', [])
            ways = props.pop('__ways__', [])

            # place for assembing the read row as if from postgres
            read_row = {}

            # whether to generate a label placement centroid
            generate_label_placement = False

            # whether to clip to a padded box
            has_water_layer = False

            # tracking which layers claim this feature, as this is important to
            # figure out which layer will be assigned the name.
            claims_feature_at_some_zoom = set()

            for layer_name, info in self.layers.items():
                if not info.allows_shape_type(shape):
                    continue

                source_value = props.get('source')
                source = lookup_source(source_value)

                # this is a bit of a hack to ensure that custom source values,
                # as used in the tests, get passed though the fixture data
                # fetcher intact.
                if source is None and source_value is not None:
                    source = Source(source_value, source_value)

                meta = Metadata(source, ways, rels)
                min_zoom = info.min_zoom_fn(shape, props, fid, meta)

                # reject features which don't match in this layer
                if min_zoom is None:
                    continue

                # make a note that this feature is claimed at some zoom by this
                # layer, which is important for name processing.
                claims_feature_at_some_zoom.add(layer_name)

                # reject anything which isn't in the current zoom range
                # note that this is (zoom+1) because things with a min_zoom of
                # (e.g) 14.999 should still be in the zoom 14 tile.
                #
                # also, if zoom >= 16, we should include all features, even
                # those with min_zoom > zoom.
                if zoom < 16 and (zoom + 1) <= min_zoom:
                    continue

                # UGLY HACK: match the query for "max zoom" for NE places.
                # this removes larger cities at low zooms, and smaller cities
                # as the zoom increases and as the OSM cities start to "fade
                # in".
                if source and source.name == 'ne':
                    pop_max = int(props.get('pop_max', '0'))
                    remove = ((zoom >= 8 and zoom < 10 and pop_max > 50000)
                              or (zoom >= 10 and zoom < 11 and pop_max > 20000)
                              or (zoom >= 11 and pop_max > 5000))
                    if remove:
                        continue

                # if the feature exists in any label placement layer, then we
                # should consider generating a centroid
                label_layers = self.label_placement_layers.get(
                    shape_type_lookup(shape), {})
                if layer_name in label_layers:
                    generate_label_placement = True

                layer_props = layer_properties(fid, shape, props, layer_name,
                                               zoom, self.osm)

                if source:
                    layer_props['source'] = source.value

                layer_props['min_zoom'] = min_zoom
                props_name = '__%s_properties__' % layer_name
                read_row[props_name] = layer_props
                if layer_name == 'water':
                    has_water_layer = True

            # if at least one min_zoom / properties match
            if read_row:
                clip_box = bbox
                if has_water_layer:
                    pad_factor = 1.1
                    clip_box = calculate_padded_bounds(pad_factor,
                                                       unpadded_bounds)
                clip_shape = clip_box.intersection(shape)

                # add back name into whichever of the pois, landuse or
                # buildings layers has claimed this feature.
                names = {}
                for k in name_keys(props):
                    names[k] = props[k]
                if names:
                    for layer_name in ('pois', 'landuse', 'buildings'):
                        if layer_name in claims_feature_at_some_zoom:
                            props_name = '__%s_properties__' % layer_name
                            if props_name in read_row:
                                read_row[props_name].update(names)
                            # break regardless of whether or not we managed to
                            # update the row - sometimes a feature is claimed
                            # in one layer at a min_zoom higher than another
                            # layer's min_zoom. so the feature is visible
                            # before it gets labelled.
                            break

                read_row['__id__'] = fid
                read_row['__geometry__'] = bytes(clip_shape.wkb)
                if generate_label_placement:
                    read_row['__label__'] = bytes(
                        shape.representative_point().wkb)
                read_rows.append(read_row)

        return read_rows
예제 #5
0
def _make_rawr_fetcher(cfg, layer_data, query_cfg, io_pool):
    rawr_yaml = cfg.yml.get('rawr')
    assert rawr_yaml is not None, 'Missing rawr configuration in yaml'

    group_by_zoom = rawr_yaml.get('group-zoom')
    assert group_by_zoom is not None, 'Missing group-zoom rawr config'

    rawr_source_yaml = rawr_yaml.get('source')
    assert rawr_source_yaml, 'Missing rawr source config'

    table_sources = rawr_source_yaml.get('table-sources')
    assert table_sources, 'Missing definitions of source per table'

    # map text for table source onto Source objects
    for tbl, data in table_sources.items():
        source_name = data['name']
        source_value = data['value']
        table_sources[tbl] = Source(source_name, source_value)

    label_placement_layers = rawr_yaml.get('label-placement-layers', {})
    for geom_type, layers in label_placement_layers.items():
        assert geom_type in ('point', 'polygon', 'linestring'), \
            'Geom type %r not understood, expecting point, polygon or ' \
            'linestring.' % (geom_type,)
        label_placement_layers[geom_type] = set(layers)

    indexes_cfg = rawr_yaml.get('indexes')
    assert indexes_cfg, 'Missing definitions of table indexes.'

    # source types are:
    #   s3       - to fetch RAWR tiles from S3
    #   store    - to fetch RAWR tiles from any tilequeue tile source
    #   generate - to generate RAWR tiles directly, rather than trying to load
    #              them from S3. this can be useful for standalone use and
    #              testing. provide a postgresql subkey for database connection
    #              settings.
    source_type = rawr_source_yaml.get('type')

    if source_type == 's3':
        rawr_source_s3_yaml = rawr_source_yaml.get('s3')
        bucket = rawr_source_s3_yaml.get('bucket')
        assert bucket, 'Missing rawr source s3 bucket'
        region = rawr_source_s3_yaml.get('region')
        assert region, 'Missing rawr source s3 region'
        prefix = rawr_source_s3_yaml.get('prefix')
        assert prefix, 'Missing rawr source s3 prefix'
        suffix = rawr_source_s3_yaml.get('suffix')
        assert suffix, 'Missing rawr source s3 suffix'
        allow_missing_tiles = rawr_source_s3_yaml.get('allow-missing-tiles',
                                                      False)

        import boto3
        from tilequeue.rawr import RawrS3Source
        s3_client = boto3.client('s3', region_name=region)
        storage = RawrS3Source(s3_client, bucket, prefix, suffix,
                               table_sources, allow_missing_tiles)

    elif source_type == 'generate':
        from raw_tiles.source.conn import ConnectionContextManager
        from raw_tiles.source.osm import OsmSource

        postgresql_cfg = rawr_source_yaml.get('postgresql')
        assert postgresql_cfg, 'Missing rawr postgresql config'

        conn_ctx = ConnectionContextManager(postgresql_cfg)
        rawr_osm_source = OsmSource(conn_ctx)
        storage = _NullRawrStorage(rawr_osm_source, table_sources)

    elif source_type == 'store':
        from tilequeue.store import make_store
        from tilequeue.rawr import RawrStoreSource

        store_cfg = rawr_source_yaml.get('store')
        store = make_store(store_cfg,
                           credentials=cfg.subtree('aws credentials'))
        storage = RawrStoreSource(store, table_sources)

    else:
        assert False, 'Source type %r not understood. ' \
            'Options are s3, generate and store.' % (source_type,)

    # TODO: this needs to be configurable, everywhere! this is a long term
    # refactor - it's hard-coded in a bunch of places :-(
    max_z = 16

    layers = _make_layer_info(layer_data, cfg.process_yaml_cfg)

    return make_rawr_data_fetcher(group_by_zoom, max_z, storage, layers,
                                  indexes_cfg, label_placement_layers)