def test_get_chunks(self): x = np.random.normal(0, 1, (100, 80)) starts = [20, 50] ends = [30, 70] # test dimension 0 chunks = time_series.get_chunks(x, starts, ends, axis=0) self.assertEqual(len(chunks), 2) for chunk, start, end in zip(chunks, starts, ends): np.testing.assert_array_almost_equal(chunk, x[start:end, :]) # test dimension 1 chunks = time_series.get_chunks(x, starts, ends, axis=1) self.assertEqual(len(chunks), 2) for chunk, start, end in zip(chunks, starts, ends): np.testing.assert_array_almost_equal(chunk, x[:, start:end])
def variability_stim_conditioned(nwb_file, detrend_window, neurons_per_stim): """ Calculate the variability of neural responses conditioned on a specific stimulus, averaged over basically everything, for a single experiment. :param nwb_file: path to experiment's .nwb file :param detrend_window: window length (number of timesteps) to use when detrending fluorescence traces :return data frame where rows are stimuli and which has columns: temporal_frequency, orientation, variability, most_active_neurons """ print(nwb_file) # get and detrend fluorescence traces _, traces = api.get_fluorescence_traces(nwb_file) traces -= time_series.windowed_mean(traces, detrend_window) traces /= np.tile(traces.std(axis=1)[:, None], (1, traces.shape[1])) # get stimulus data stim_data = api.get_stimulus_table(nwb_file) # get unique stimulus conditions as list of tuples stim_conditions_df = api.get_stimulus_conditions(nwb_file, include_blanks=False) stim_conditions = [tuple(cond) for cond in stim_conditions_df.values] df = pd.DataFrame(columns=['temporal_frequency', 'orientation', 'variability', 'most_active_neurons']) for tf, ori in stim_conditions: # get all start and end times for this stimulus mask = (stim_data['temporal_frequency'] == tf) & (stim_data['orientation'] == ori) starts, ends = stim_data[['start', 'end']][mask].values.T min_dur = (ends - starts).min() diffs = ends - starts - min_dur ends[diffs > 0] -= diffs[diffs > 0] # get all neural responses to all repetitions of this stimulus responses_all = time_series.get_chunks(traces, starts, ends, axis=1) # find most responsive neurons responses_all = [time_series.subtract_first(response, axis=1) for response in responses_all] responsivenesses_trial = [np.abs(response).max(axis=1)[:, None] for response in responses_all] responsivenesses_stim = np.concatenate(responsivenesses_trial, axis=1).mean(axis=1) most_active_neurons = np.argsort(responsivenesses_stim)[-neurons_per_stim:] # get responses of active neurons only responses = [response[most_active_neurons, :] for response in responses_all] time_averaged_stds_neuron = [] for ctr in range(neurons_per_stim): std = np.concatenate([response[ctr, :][None, :] for response in responses], axis=0).std(axis=0) time_averaged_stds_neuron.append(std.mean()) data = { 'temporal_frequency': tf, 'orientation': ori, 'variability': np.mean(time_averaged_stds_neuron), 'most_active_neurons': most_active_neurons } df = df.append(data, ignore_index=True) return df
def variability_stim_conditioned(nwb_file, detrend_window, neurons_per_stim): """ Calculate the variability of neural responses conditioned on a specific stimulus, averaged over basically everything, for a single experiment. :param nwb_file: path to experiment's .nwb file :param detrend_window: window length (number of timesteps) to use when detrending fluorescence traces :return data frame where rows are stimuli and which has columns: temporal_frequency, orientation, variability, most_active_neurons """ print(nwb_file) # get and detrend fluorescence traces _, traces = api.get_fluorescence_traces(nwb_file) traces -= time_series.windowed_mean(traces, detrend_window) traces /= np.tile(traces.std(axis=1)[:, None], (1, traces.shape[1])) # get stimulus data stim_data = api.get_stimulus_table(nwb_file) # get unique stimulus conditions as list of tuples stim_conditions_df = api.get_stimulus_conditions(nwb_file, include_blanks=False) stim_conditions = [tuple(cond) for cond in stim_conditions_df.values] df = pd.DataFrame(columns=[ 'temporal_frequency', 'orientation', 'variability', 'most_active_neurons' ]) for tf, ori in stim_conditions: # get all start and end times for this stimulus mask = (stim_data['temporal_frequency'] == tf) & (stim_data['orientation'] == ori) starts, ends = stim_data[['start', 'end']][mask].values.T min_dur = (ends - starts).min() diffs = ends - starts - min_dur ends[diffs > 0] -= diffs[diffs > 0] # get all neural responses to all repetitions of this stimulus responses_all = time_series.get_chunks(traces, starts, ends, axis=1) # find most responsive neurons responses_all = [ time_series.subtract_first(response, axis=1) for response in responses_all ] responsivenesses_trial = [ np.abs(response).max(axis=1)[:, None] for response in responses_all ] responsivenesses_stim = np.concatenate(responsivenesses_trial, axis=1).mean(axis=1) most_active_neurons = np.argsort( responsivenesses_stim)[-neurons_per_stim:] # get responses of active neurons only responses = [ response[most_active_neurons, :] for response in responses_all ] time_averaged_stds_neuron = [] for ctr in range(neurons_per_stim): std = np.concatenate( [response[ctr, :][None, :] for response in responses], axis=0).std(axis=0) time_averaged_stds_neuron.append(std.mean()) data = { 'temporal_frequency': tf, 'orientation': ori, 'variability': np.mean(time_averaged_stds_neuron), 'most_active_neurons': most_active_neurons } df = df.append(data, ignore_index=True) return df