def doGridSearch(self): # params = {'base_estimator__max_depth': 10} # self.classifier.set_params(**params) # parameters = {'base_estimator__max_depth': np.arange(2, 12, 1)} # parameters = {'base_estimator__max_depth':np.arange(2, 12, 1), # 'base_estimator__min_samples_split':np.arange(2, 100, 1)} # parameters = {'base_estimator__max_depth': [7,8,9,10], 'learning_rate':[.1, .01, .001, .0001], 'n_estimators':[100, 110,120,130,150,170,200]} parameters = { 'base_estimator__max_depth': [3, 4, 5], 'learning_rate': np.arange(.0001, .9, .05), 'n_estimators': np.arange(10, 300, 20) } clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) a = pd.DataFrame(clf.best_params_, index=[0]) a.to_csv('{}/images/{}/{}/{}_{}_gridsearch.csv'.format( '.', self.datasetName, self.algoname, self.datasetName, self.algoname)) self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName, prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')
def generateFinalModel(self): params = {'n_neighbors': 1, 'metric': 'manhattan', 'weights': 'uniform'} self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train,self.classifier,self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def doGridSearch(self): # parameters = {"C": np.arange(0.001, 2.5, 0.25)} parameters = { "C": np.arange(0.001, 2.5, 0.25), "gamma": np.arange(1 / self.features.shape[1], 2.1, 0.1) } clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) js = json.dumps(clf.best_params_) filename = '{}/images/{}/{}/{}_{}_GSP.json'.format( '.', self.datasetName, self.algoname, self.datasetName, self.algoname) f = open(filename, "w") f.write(js) f.close() self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName, prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')
def doGridSearch(self): dimension = self.features.shape[1] # parameters = {'solver':['lbfgs', 'adam'], "alpha": np.logspace(-5, 3, 20),'max_iter':np.arange(2, 1000, 10), # 'hidden_layer_sizes': [(h,) * l for l in [1, 2, 3] for h in [dimension, dimension // 2, dimension * 2]]} parameters = { 'alpha': np.logspace(-5, 3, 20), 'max_iter': [2**x for x in range(10)], 'hidden_layer_sizes': [(h, ) * l for l in [1, 2, 3] for h in [dimension, dimension // 2, dimension * 2]] } clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) js = json.dumps(clf.best_params_) filename = '{}/images/{}/{}/{}_{}_GSP.json'.format( '.', self.datasetName, self.algoname, self.datasetName, self.algoname) f = open(filename, "w") f.write(js) f.close() self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName, prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')
def generateFinalModel(self): params = {"C": 2.251, "gamma": 0.2625,'class_weight':'balanced'} self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train,self.classifier,self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def generateFinalModel(self): params = {'max_depth': 22, 'class_weight': 'balanced'} self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def generateFinalModel(self): params = { 'base_estimator__max_depth': 20, 'n_estimators': 100, 'learning_rate': .01 } self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def generateFinalModel(self): params = { "alpha": 0.003359818286283781, "hidden_layer_sizes": [32, 32, 32], "max_iter": 128 } self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def generateFinalModel(self): params = { "alpha": 0.0004832930238571752, "hidden_layer_sizes": [20, 20, 20], "max_iter": 256 } self.classifier.set_params(**params) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName) self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy() self.generateFinalLC()
def doGridSearch(self): parameters = {"n_neighbors":np.arange(1,50,1), "metric":['manhattan', 'chebyshev', 'euclidean']} clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) a = pd.DataFrame(clf.best_params_, index=[0]) a.to_csv('{}/images/{}/{}/{}_{}_gridsearch.csv'.format('.', self.datasetName, self.algoname, self.datasetName, self.algoname)) self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName,prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')
def doGridSearch(self): parameters = { 'max_depth': np.arange(8, 24, 1), "min_samples_split": np.arange(2, 100, 5) } clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) a = pd.DataFrame(clf.best_params_, index=[0]) a.to_csv('{}/images/{}/{}/{}_{}_gridsearch.csv'.format( '.', self.datasetName, self.algoname, self.datasetName, self.algoname)) self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName, prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')
def doGridSearch(self): parameters = { 'base_estimator__max_depth': np.arange(5, 22, 1), 'learning_rate': np.arange(.0001, .9, .05), 'n_estimators': np.arange(10, 300, 20) } clf = GridSearchCV(self.classifier, parameters, refit=True, cv=self.cv) clf.fit(self.X_train, self.y_train) a = pd.DataFrame(clf.best_params_, index=[0]) a.to_csv('{}/images/{}/{}/{}_{}_gridsearch.csv'.format( '.', self.datasetName, self.algoname, self.datasetName, self.algoname)) self.classifier = clf.best_estimator_ self.classifier.set_params(**clf.best_params_) timing.getTimingData(self.X_train, self.y_train, self.classifier, self.algoname, self.datasetName, prefix='GS') self.classifier.fit(self.X_train, self.y_train) self.generateFinalAccuracy(prefix='GS') self.generateFinalLC(prefix='GS')