def test_ssd300(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") model = Model(ssd300_mobilenetv2()) model.compile() loc, score = model.predict(ts.ones((1, 3, 300, 300))) print(loc.asnumpy(), score.asnumpy())
device_target=args_opt.device_target) # download voc dataset if not args_opt.dataset_path: args_opt.dataset_path = download_dataset('voc') epoch_size = args_opt.epoch_size batch_size = args_opt.batch_size voc_path = args_opt.dataset_path dataset_sink_mode = not args_opt.device_target == "CPU" if not args_opt.do_eval: # as for train, users could use model.train ds_train = create_dataset(voc_path, batch_size=batch_size) dataset_size = ds_train.get_dataset_size() # build the SSD300 network net = ssd300_mobilenetv2(class_num=args_opt.num_classes) # define the loss function if args_opt.device_target == "GPU": net.to_float(ts.float16) net = net_with_loss(net) init_net_param(net) # define the optimizer lr = ssd300_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size, lr_init=0.001, lr_end=0.001 * args_opt.lr, lr_max=args_opt.lr, warmup_epochs=2, total_epochs=args_opt.epoch_size, steps_per_epoch=dataset_size) loss_scale = 1.0 if args_opt.device_target == "CPU" else float(