예제 #1
0
def default_setup(cfg, args):
    output_dir = cfg.OUTPUT_DIR
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    setup_logger(output_dir, distributed_rank=rank, name="fvcore")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(
        rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config") and args.config != "":
        logger.info("Contents of args.config={}:\n{}".format(
            args.config,
            PathManager.open(args.config, "r").read()))

    logger.info("Running with full config:\n{}".format(cfg))

    seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank)

    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK
예제 #2
0
def load_cityscapes_instances(image_dir,
                              gt_dir,
                              from_json=True,
                              to_polygons=True):
    if from_json:
        assert to_polygons, \
            "Cityscapes's json annotations are in polygon format. Converting to mask format is not supported now."

    files = get_cityscapes_files(image_dir, gt_dir)

    logger.info("Preprocessing cityscapes annotations ...")
    pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4))

    ret = pool.map(
        functools.partial(cityscapes_files_to_dict,
                          from_json=from_json,
                          to_polygons=to_polygons),
        files,
    )
    logger.info(f"Loaded {len(ret)} images from {image_dir}")

    from cityscapesscripts.helpers.labels import labels

    labels = [l for l in labels if l.hasInstances and not l.ignoreInEval]
    dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)}
    for dict_per_image in ret:
        for anno in dict_per_image["annotations"]:
            anno["category_id"] = dataset_id_to_contiguous_id[
                anno["category_id"]]
    return ret
예제 #3
0
    def __init__(self, cfg):
        logger = logging.getLogger("tkdet")
        if not logger.isEnabledFor(logging.INFO):
            setup_logger()
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        if comm.get_world_size() > 1:
            model = DistributedDataParallel(model,
                                            device_ids=[comm.get_local_rank()],
                                            broadcast_buffers=False)
        super().__init__(model, data_loader, optimizer)

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        self.checkpointer = DetectionCheckpointer(
            model,
            cfg.OUTPUT_DIR,
            optimizer=optimizer,
            scheduler=self.scheduler,
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())
예제 #4
0
    def __init__(self, repeat_factors, *, shuffle=True, seed=None):
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        self._int_part = torch.trunc(repeat_factors)
        self._frac_part = repeat_factors - self._int_part
예제 #5
0
    def __init__(self, size: int):
        assert size > 0

        self._size = size
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()

        shard_size = (self._size - 1) // self._world_size + 1
        begin = shard_size * self._rank
        end = min(shard_size * (self._rank + 1), self._size)
        self._local_indices = range(begin, end)
예제 #6
0
    def __init__(self,
                 size: int,
                 shuffle: bool = True,
                 seed: Optional[int] = None):
        self._size = size
        assert size > 0
        self._shuffle = shuffle
        if seed is None:
            seed = comm.shared_random_seed()
        self._seed = int(seed)

        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
예제 #7
0
파일: build.py 프로젝트: tkhe/tkdetection
def build_batch_data_loader(
    dataset,
    sampler,
    total_batch_size,
    *,
    aspect_ratio_grouping=False,
    num_workers=0
):
    world_size = get_world_size()
    assert total_batch_size > 0 and total_batch_size % world_size == 0, \
        "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
            total_batch_size,
            world_size
        )

    batch_size = total_batch_size // world_size
    if aspect_ratio_grouping:
        data_loader = torch.utils.data.DataLoader(
            dataset,
            sampler=sampler,
            num_workers=num_workers,
            batch_sampler=None,
            collate_fn=operator.itemgetter(0),
            worker_init_fn=worker_init_reset_seed,
        )
        return AspectRatioGroupedDataset(data_loader, batch_size)
    else:
        batch_sampler = torch.utils.data.sampler.BatchSampler(
            sampler,
            batch_size,
            drop_last=True
        )
        return torch.utils.data.DataLoader(
            dataset,
            num_workers=num_workers,
            batch_sampler=batch_sampler,
            collate_fn=trivial_batch_collator,
            worker_init_fn=worker_init_reset_seed,
        )
예제 #8
0
def inference_on_dataset(model, data_loader, evaluator):
    num_devices = get_world_size()
    logger = logging.getLogger(__name__)
    logger.info("Start inference on {} images".format(len(data_loader)))

    total = len(data_loader)
    if evaluator is None:
        evaluator = DatasetEvaluators([])
    evaluator.reset()

    num_warmup = min(5, total - 1)
    start_time = time.perf_counter()
    total_compute_time = 0
    with inference_context(model), torch.no_grad():
        for idx, inputs in enumerate(data_loader):
            if idx == num_warmup:
                start_time = time.perf_counter()
                total_compute_time = 0

            start_compute_time = time.perf_counter()
            outputs = model(inputs)
            if torch.cuda.is_available():
                torch.cuda.synchronize()
            total_compute_time += time.perf_counter() - start_compute_time
            evaluator.process(inputs, outputs)

            iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
            seconds_per_img = total_compute_time / iters_after_start
            if idx >= num_warmup * 2 or seconds_per_img > 5:
                total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start
                eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1)))
                log_every_n_seconds(
                    logging.INFO,
                    "Inference done {}/{}. {:.4f} s / img. ETA={}".format(
                        idx + 1,
                        total,
                        seconds_per_img,
                        str(eta)
                    ),
                    n=5,
                )

    total_time = time.perf_counter() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({:.6f} s / img per device, on {} devices)".format(
            total_time_str,
            total_time / (total - num_warmup),
            num_devices
        )
    )
    total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time)))
    logger.info(
        "Total inference pure compute time: {} ({:.6f} s / img per device, on {} devices)".format(
            total_compute_time_str,
            total_compute_time / (total - num_warmup),
            num_devices
        )
    )

    results = evaluator.evaluate()
    if results is None:
        results = {}
    return results