def eval_ranking_varying_topics(query_id, data_dir, keywords, limit = 1000, img_extension = '.eps'): tokens = ' '.join( lemmatize_tokens( regex_tokenizer(keywords) ) ) # Lemmatization lucene_query = 'all:(%s)' % tokens # search in all fields print 'Lucene query:', lucene_query print 'TM query:', tokens truth_dir = "%s%d" % (data_dir, query_id) positive_dir = os.path.join(truth_dir, RELEVANT_DIR_NAME) # TRUE positive documents topiclda_rocs_file_name = '%d-LW-Topic-LDA-VaryingTopics-ROCs' % query_id + img_extension topiclda_rocs_img_title = 'Q%d (Topic-LDA): Varying # of LDA Topics and Lemmas' % query_id keywordlda_rocs_file_name = '%d-LW-Keyword-LDA-VaryingTopics-ROCs' % query_id + img_extension keywordlda_rocs_img_title = 'Q%d (Keyword-LDA): Varying # of LDA Topics and Lemmas' % query_id topics = [5, 10, 15, 20, 30, 40, 50, 60, 70] roc_labels = [] roc_topiclda_list = [] roc_keywordlda_list = [] for idx, num_topics in enumerate(topics): print '------------------------------------------------------------------------------------------' #---------------------------------------------- Reads the configuration file config_file = "%sQ%d-LW-%dT.cfg" % (data_dir, query_id, num_topics) # configuration file, created using the SMARTeR GUI mdl_cfg = read_config(config_file) # Loads the LDA model (lda_dictionary, lda_mdl, lda_index, lda_file_path_index, lda_theta, lda_beta) = load_lda_parameters(mdl_cfg) #------------ Checks whether the keywords are there in the corpus dictionary valid_tokens = 0 for token in tokens.split(): if token.strip() not in lda_dictionary.values(): print token, "is not in the corpus vocabulary." else: valid_tokens += 1 if valid_tokens == 0: print 'None of the tokens exist in the dictionary. Exiting topic search!' exit() # Gets the query topic distribution from the LDA beta print 'Estimated topic dist. from the LDA beta:' query_td2 = get_lda_query_td2(tokens, lda_dictionary, lda_beta) dominant_topics_idx2 = get_query_top_topic_idx(query_td2, lda_mdl, TOP_K_TOPICS) # Gets the query topic distribution from the LDA model print 'Estimated topic dist. from the LDA model:' query_td = get_lda_query_td(tokens, lda_dictionary, lda_mdl) dominant_topics_idx = get_query_top_topic_idx(query_td, lda_mdl, TOP_K_TOPICS) #------------------------------------------------------------- Lucene search if idx == 0: # the first Lucene ranking is added as a reference print 'Lucene ranking' # lu_docs = search_li(lucene_query, limit, mdl_cfg) lu_docs = search_whoosh_index(lucene_query, mdl_cfg) _, lu_docs_list = lu_append_nonresp(lu_docs, truth_dir) lu_res = convert_to_roc_format(lu_docs_list, positive_dir) roc_topiclda_list.append(ROCData(lu_res)) roc_keywordlda_list.append(ROCData(lu_res)) roc_labels.append('Lucene') #---------------------------------------------------------------- LDA search # # Gets the dominant topics from the LDA model # dominant_topics = get_dominant_query_topics(tokens, lda_dictionary, lda_mdl, TOP_K_TOPICS) # dominant_topics_idx = [idx for (idx, _) in dominant_topics] # get the topic indices print 'LDA (w/ keywords) ranking' lda_docs = search_tm2(query_td, lda_index, lda_file_path_index, limit) lda_res = convert_to_roc_format(lda_docs, positive_dir) print 'LDA (w/ keywords) method-2 ranking' lda_docs2 = search_tm2(query_td2, lda_index, lda_file_path_index, limit) lda_res2 = convert_to_roc_format(lda_docs2, positive_dir) print 'LDA (w/ query topics) ranking' lda_tts_docs = search_tm_topics(dominant_topics_idx, limit, lda_file_path_index, lda_theta) lda_tts_res = convert_to_roc_format(lda_tts_docs, positive_dir) print 'LDA (w/ query topics) method-2 ranking' lda_tts_docs2 = search_tm_topics(dominant_topics_idx2, limit, lda_file_path_index, lda_theta) lda_tts_res2 = convert_to_roc_format(lda_tts_docs2, positive_dir) roc_topiclda_list.append(ROCData(lda_tts_res)) roc_keywordlda_list.append(ROCData(lda_res)) roc_labels.append('%d topics' % num_topics) roc_topiclda_list.append(ROCData(lda_tts_res2)) roc_keywordlda_list.append(ROCData(lda_res2)) roc_labels.append('%d topics (method-2)' % num_topics) print '------------------------------------------------------------------------------------------' ## Plot ROC curves plot_multiple_roc(roc_topiclda_list, title=topiclda_rocs_img_title, labels=roc_labels, include_baseline=True, file_name=topiclda_rocs_file_name) plot_multiple_roc(roc_keywordlda_list, title=keywordlda_rocs_img_title, labels=roc_labels, include_baseline=True, file_name=keywordlda_rocs_file_name)
def eval_keywordlda_topiclda_lucene_ranking(file_prefix, config_file, truth_dir, tokens, limit = 1000, img_extension = '.eps', output_dir = ''): lucene_query = 'all:(%s)' % tokens # search in all fields print print 'Processing', file_prefix print 'Lucene query:', lucene_query print 'TM query:', tokens positive_dir = os.path.join(truth_dir, RELEVANT_DIR_NAME) # TRUE positive documents rocs_file_name = os.path.join(output_dir, '%s-keywordlda-topiclda-lucene-ranking-ROCs' \ % file_prefix + img_extension) rocs_img_title = '' # %s: ROC curves' % file_prefix roc_labels = ['Lucene ranking', 'Keyword-LDA ranking' , 'Topic-LDA ranking', 'Topic-LDA-2 ranking', 'Keyword-LDA-2 ranking'] line_styles = ['ro-','kx-','b+-','c^-','yv-.'] #---------------------------------------------- Reads the configuration file mdl_cfg = read_config(config_file) # Loads the LDA model (lda_dictionary, lda_mdl, lda_index, lda_file_path_index, lda_theta, lda_beta) = load_lda_parameters(mdl_cfg) # Checks whether the keywords are there in the corpus dictionary valid_tokens = 0 for token in tokens.split(): if token.strip() not in lda_dictionary.values(): print token, "is not in the corpus vocabulary. " else: valid_tokens += 1 if valid_tokens == 0: print 'None of the tokens exist in the dictionary. Exiting search!' exit() # # query_vec = lda_dictionary.doc2bow(tokens.split()) # query_term_theta2 = np.array([lda_beta[:,vocab_id] for (vocab_id, _) in query_vec]).sum(axis=0) # query_term_theta2 /= sum(query_term_theta2.tolist()) # dominant_topics_idx2 = np.argsort(query_term_theta2)[::-1][:TOP_K_TOPICS] # # query_td2 = [(idx, val) for idx, val in enumerate(query_term_theta2)] # # # Gets the query topic distribution from the LDA beta print 'Estimated topic dist. from the LDA beta:' query_td2 = get_lda_query_td2(tokens, lda_dictionary, lda_beta) dominant_topics_idx2 = get_query_top_topic_idx(query_td2, lda_mdl, TOP_K_TOPICS) # Gets the query topic distribution from the LDA model print 'Estimated topic dist. from the LDA model:' query_td = get_lda_query_td(tokens, lda_dictionary, lda_mdl) dominant_topics_idx = get_query_top_topic_idx(query_td, lda_mdl, TOP_K_TOPICS) #------------------------------------------------------------- Lucene search print 'Lucene ranking' # lu_docs = search_li(lucene_query, limit, mdl_cfg) lu_docs = search_whoosh_index(lucene_query, mdl_cfg) _, lu_docs_list = lu_append_nonresp(lu_docs, truth_dir) lu_res = convert_to_roc_format(lu_docs_list, positive_dir) #---------------------------------------------------------------- LDA search # To display the LDA model topics based on the # increasing order of entropy # print_lda_topics_on_entropy(lda_mdl, file_name='%s-topic-words.csv' % file_prefix, topn=50) # # Gets the dominant topics from the LDA model # dominant_topics = get_dominant_query_topics(tokens, lda_dictionary, lda_mdl, TOP_K_TOPICS) # dominant_topics_idx = [idx for (idx, _) in dominant_topics] # get the topic indices print 'LDA (w/ keywords) ranking' lda_docs = search_tm2(query_td, lda_index, lda_file_path_index, limit) lda_res = convert_to_roc_format(lda_docs, positive_dir) print 'LDA (w/ keywords) method-2 ranking' lda_docs2 = search_tm2(query_td2, lda_index, lda_file_path_index, limit) lda_res2 = convert_to_roc_format(lda_docs2, positive_dir) print 'LDA (w/ query topics) ranking' lda_tts_docs = search_tm_topics(dominant_topics_idx, limit, lda_file_path_index, lda_theta) lda_tts_res = convert_to_roc_format(lda_tts_docs, positive_dir) print 'LDA (w/ query topics) method-2 ranking' lda_tts_docs2 = search_tm_topics(dominant_topics_idx2, limit, lda_file_path_index, lda_theta) lda_tts_res2 = convert_to_roc_format(lda_tts_docs2, positive_dir) ## Plot ROC curves results_list = [lu_res, lda_res, lda_tts_res, lda_tts_res2, lda_res2] roc_data_list = [ROCData(result, linestyle=line_styles[idx]) for idx, result in enumerate(results_list)] plot_multiple_roc(roc_data_list, title=rocs_img_title, labels=roc_labels, include_baseline=True, file_name=rocs_file_name) print 'The ROCs are stored in this path', rocs_file_name print