예제 #1
0
    def _to_DynCommunitiesIG_fast(self):
        """
        Work only in the standard represntation: all sn have duration 1, no missing snapshot
        :return:
        """
        dyn_com_local = {}
        for t, part in self.snapshot_communities().items():
            for id, nodes in part.items():
                for n in nodes:
                    name = id
                    dyn_com_local.setdefault(name, {}).setdefault(n, [])
                    if len(dyn_com_local[name]
                           [n]) > 0 and dyn_com_local[name][n][-1][-1] == t:
                        dyn_com_local[name][n][-1] = (
                            dyn_com_local[name][n][-1][0], t + 1)
                    else:
                        dyn_com_local[name][n].append((t, t + 1))

        to_return_com = tn.DynCommunitiesIG()

        for c in dyn_com_local:
            for n in dyn_com_local[c]:
                dyn_com_local[c][n] = Intervals(dyn_com_local[c][n])

        to_return_com._fast_set_affiliations(dyn_com_local)
        return to_return_com
예제 #2
0
def convert_stable_communities(persistant_coms,nb_coms=None,duration_min=0,duration_max=10000000):
    visu_blocks = tn.DynCommunitiesIG()
    if nb_coms==None:
        nb_coms = len(persistant_coms)
    for nodes,period,current_granularity,score in persistant_coms[:nb_coms]:
        if period.duration()>duration_min and period.duration()<duration_max:
            #we give a unique name to each community, since colors are attributed according to community names
            name = str(period.start()).zfill(5)+","+str(nodes)+","+str(current_granularity)
            visu_blocks.add_affiliation(nodes,name,period)
    return visu_blocks
예제 #3
0
    def __init__(self,
                 alpha=0.80,
                 external_density_penalty=0.05,
                 random_noise=0,
                 verbose=False,
                 variant="deterministic"):
        """
        Initialize the community generation class

        When initializing, we can set the parameters of the link generation

        :param alpha: alpha parameter that determines the density of communities decrease with size
        :param external_density_penalty: beta, how smaller the density of outside community is compared to a a community of the same size
        :param random_noise: beta_r, fraction of existing edges that are randomly rewired at each step
        :param verbose: If true, print debugging information
        :param variant: the variant of the generator controls the way edges are generated. Currently, only "deterministic" is fully suported

        """

        ##################### Parameters ##########
        # parameter to define how fast snapshot_affiliations are loosing in density when they grow
        self.random_noise = random_noise

        self.alpha_com_density = alpha

        self._pairsImportance = [
        ]  #List of importance for each pair of nodes in the graph

        #dictionary containing the list of all currently active snapshot_affiliations (and operations). {name:object}
        self._currentCommunities = set()  # type:{_AbstractStructure}

        self._currentID = 0  #To ensure that all community IDs are different
        self._currentT = 0  #keep track of time

        # For optimization, memorize communities and graphs in a local format
        self._dyn_graph_local_edges = dict()
        self._dyn_graph_local_nodes = dict()
        self._dyn_com_local = dict()

        #self._dynCom = dn.DynamicCommunitiesSN() #Class used to memorize the dynamic snapshot_affiliations in the dynamic rerence partition"
        self._dynCom = dn.DynCommunitiesIG()

        self._variant = variant

        self._actions = list()  #list of community operations to do
        self._verbose = verbose
        self._externalDensityPenalty = external_density_penalty

        self._allSeenNodes = set(
        )  #list of nodes that appear at least once (to manage pairsimportance)
        self._allSeenCommunities = set()  #to manage triggers
예제 #4
0
    def slice(self,start,end):
        """
        Keep only the selected period

        :param start:
        :param end:
        """

        to_return = tn.DynCommunitiesIG()
        interv = tn.Intervals((start,end))
        for c_id,c in self.communities().items():
            for n,the_inter in c.items():
                duration = interv.intersection(the_inter)
                if duration.duration()>0:
                    to_return.add_affiliation(n,c_id,duration)
        return to_return
예제 #5
0
    def __init__(self,
                 variant="deterministic",
                 alpha=0.80,
                 externalDensityPenalty=0.05,
                 verbose=False):
        """

        :param variant: the variant of the generator controls the way edges are generated. Currently, only "deterministic" is fully suported
        :param alpha: alpha parameter that determines how
        :param externalDensityPenalty: how smaller the density of outside comuninty is compared to a a community of the same size
        :param verbose: If true, print debugging information

        """

        ##################### Parameters ##########
        # parameter to define how fast snapshot_affiliations are loosing in density when they grow
        self.alpha_com_density = 0.75

        self.alpha_com_density = alpha  #alpha parameter is defined as a global variable, see beginning of the file

        self._pairsImportance = [
        ]  #List of importance for each pair of nodes in the graph

        #dictionary containing the list of all currently active snapshot_affiliations (and operations). {name:object}
        self._currentCommunities = dict()  # type:{str:_AbstractStructure}

        self._currentID = 0  #To ensure that all community IDs are different
        self._currentT = 0  #keep track of time

        #self._dynGraph=dn.DynGraphSN() # Class used to memorize the dynamic graph generated
        ##self._dynGraph=dn.DynGraphSG()
        self._dyn_graph_edges = dict()
        self._dyn_graph_nodes = dict()

        #self._dynCom = dn.DynamicCommunitiesSN() #Class used to memorize the dynamic snapshot_affiliations in the dynamic rerence partition"
        self._dynCom = dn.DynCommunitiesIG()

        self._variant = variant

        self._actions = list()  #list of community operations to do
        self._verbose = verbose
        self._externalDensityPenalty = externalDensityPenalty

        self._allSeenNodes = set(
        )  #list of nodes that appear at least once (to manage pairsimportance)
        self._allSeenCommunities = set()  #to manage triggers
예제 #6
0
    def _local_formats_to_dyn_structures(self):
        to_return_graph = dn.DynGraphIG()
        for n in self._dyn_graph_local_nodes:
            intv = Intervals(self._dyn_graph_local_nodes[n])
            to_return_graph.add_node_presence(n, intv)

        for e in self._dyn_graph_local_edges:
            [n1, n2] = list(e)
            intv = Intervals(self._dyn_graph_local_edges[e])
            to_return_graph._add_interaction_safe(n1, n2, intv)

        for c in self._dyn_com_local:
            for n in self._dyn_com_local[c]:
                self._dyn_com_local[c][n] = Intervals(
                    self._dyn_com_local[c][n])
        to_return_com = dn.DynCommunitiesIG()
        to_return_com._fast_set_affiliations(self._dyn_com_local)
        return to_return_graph, to_return_com
예제 #7
0
    def to_DynCommunitiesIG(self, sn_duration, convertTimeToInteger=False):
        """
        Convert to SG communities

        :param sn_duration: time of a snapshot, or None for automatic: each snapshot last until start of the next
        :param convertTimeToInteger: if True, communities IDs will be forgottent and replaced by consecutive integers
        :return: DynamicCommunitiesIG
        """

        dynComTN = tn.DynCommunitiesIG()
        for i in range(len(self.snapshots)):
            if convertTimeToInteger:
                t = i
                tNext = i + 1
            else:
                current_t = self.snapshots.peekitem(i)[0]

                if sn_duration != None:
                    tNext = current_t + sn_duration

                else:
                    if i < len(self.snapshots) - 1:
                        tNext = self.snapshots.peekitem(i + 1)[0]
                    else:
                        # computing the min duration to choose as duration of the last period
                        dates = list(self.snapshots.keys())
                        minDuration = min([
                            dates[i + 1] - dates[i]
                            for i in range(len(dates) - 1)
                        ])
                        tNext = current_t + minDuration

            for (cID, nodes) in self.snapshots.peekitem(
                    i)[1].items():  #for each community for this timestep
                dynComTN.add_affiliation(nodes, cID,
                                         Intervals((current_t, tNext)))

        #convert also events
        for (u, v, d) in self.events.edges(data=True):
            if d["type"] != "continue":  #if communities have different IDs
                dynComTN.events.add_event(u[1], v[1], d["time"][0],
                                          d["time"][1], d["type"])
        return dynComTN
예제 #8
0
def plot_longitudinal(dynamic_graph=None,communities=None, sn_duration=None,to_datetime=False, nodes=None,width=800,height=600,bokeh=False,auto_show=False):
    """
    A longitudinal view of nodes/snapshot_communities

    Plot snapshot_affiliations such as each node corresponds to a horizontal line and time corresponds to the horizontal axis

    :param dynamic_graph: DynGraphSN or DynGraphIG
    :param communities: dynamic snapshot_affiliations, DynCommunitiesSN or DynCommunitiesIG
    :param sn_duration: the duration of a snapshot, as int or timedelta. If none, inferred automatically as lasting until next snpashot
    :param to_datetime: one of True/False/function. If True, step IDs are converted to dates using datetime.utcfromtimestamp. If a function, should take a step ID and return a datetime object.
    :param nodes: If none, plot all nodes in lexicographic order. If a list of nodes, plot only those nodes, in that order
    :param width: width of the figure
    :param height: height of the figure
    """

    if dynamic_graph==None:
        if isinstance(communities,tn.DynCommunitiesSN):
            dynamic_graph = tn.DynGraphSN()
        else:
            dynamic_graph = tn.DynGraphIG()
    if to_datetime==True:
        to_datetime=datetime.utcfromtimestamp
        if sn_duration!=None and not isinstance(sn_duration,timedelta):
            sn_duration=timedelta(seconds=sn_duration)


    if isinstance(dynamic_graph,tn.DynGraphSN):
        if communities == None:
            communities = tn.DynCommunitiesSN()
        t = list(dynamic_graph.snapshots_timesteps())

        if communities != None and isinstance(communities,tn.DynCommunitiesSN):
            t = t + list(communities.snapshots.keys())
            t = sorted(list(set(t)))
        CDS = _sn_graph2CDS(dynamic_graph, communities, to_datetime=to_datetime,ts=t)
    else:
        if communities == None:
            communities = tn.DynCommunitiesIG()
        CDS = _ig_graph2CDS(dynamic_graph, communities, to_datetime=to_datetime)

    if isinstance(dynamic_graph,tn.DynGraphSN) and sn_duration!=None:
        CDS.data["duration"] = [sn_duration]*len(CDS.data["time"])



    if to_datetime!=False:
        CDS.data["duration_display"] = [x/1000 for x in CDS.data["duration"]]
    else:
        CDS.data["duration_display"]=CDS.data["duration"]

    #CDS.data["duration"] = [v+0.1 for v in CDS.data["duration"]]

    #should work for timedelta and integers
    CDS.data["time_shift"] = [CDS.data["time"][i] + CDS.data["duration"][i] / 2 for i in range(len(CDS.data["duration"]))]

    if nodes==None:
        nodes = sorted(list(set(CDS.data["node"])))
        nodes = [str(x) for x in nodes]

    #return _plot_longitudinal_bokeh(CDS,nodes,to_datetime,width,height,auto_show)
    if bokeh:
        return _plot_longitudinal_bokeh(CDS,nodes,to_datetime,width,height, auto_show)
    else:
        return _plot_longitudinal_pyplot(CDS,nodes,to_datetime,width,height)