def main(): env = Environment.get() env.enable_function_timers() log = Logger.get() gt = GlobalTimers.get() gt.start("toast_benchmark (total)") mpiworld, procs, rank = get_world() if rank == 0: log.info("TOAST version = {}".format(env.version())) log.info("Using a maximum of {} threads per process".format(env.max_threads())) if mpiworld is None: log.info("Running serially with one process at {}".format(str(datetime.now()))) else: if rank == 0: log.info( "Running with {} processes at {}".format(procs, str(datetime.now())) ) cases = { "tiny": 5000000, # O(1) GB RAM "xsmall": 50000000, # O(10) GB RAM "small": 500000000, # O(100) GB RAM "medium": 5000000000, # O(1) TB RAM "large": 50000000000, # O(10) TB RAM "xlarge": 500000000000, # O(100) TB RAM "heroic": 5000000000000, # O(1000) TB RAM } args, comm, n_nodes, n_detector, case, group_seconds, n_group = job_config( mpiworld, cases ) # Note: The number of "days" here will just be an approximation of the desired # data volume since we are doing a realistic schedule for a real observing site. n_days = int(2.0 * (group_seconds * n_group) / (24 * 3600)) if n_days == 0: n_days = 1 if rank == 0: log.info( "Using {} detectors for approximately {} days".format(n_detector, n_days) ) # Create the schedule file and input maps on one process if rank == 0: create_schedules(args, group_seconds, n_days) create_input_maps(args) if mpiworld is not None: mpiworld.barrier() if args.dry_run is not None: if rank == 0: log.info("Exit from dry run") # We are done! sys.exit(0) gt.start("toast_benchmark (science work)") # Load and broadcast the schedule file schedules = pipeline_tools.load_schedule(args, comm) # Load the weather and append to schedules pipeline_tools.load_weather(args, comm, schedules) # Simulate the focalplane detweights = create_focalplanes(args, comm, schedules, n_detector) # Create the TOAST data object to match the schedule. This will # include simulating the boresight pointing. data, telescope_data, total_samples = create_observations(args, comm, schedules) # handle = None # if comm.world_rank == 0: # handle = open(os.path.join(args.outdir, "distdata.txt"), "w") # data.info(handle) # if comm.world_rank == 0: # handle.close() # if comm.comm_world is not None: # comm.comm_world.barrier() # Split the communicator for day and season mapmaking time_comms = pipeline_tools.get_time_communicators(args, comm, data) # Expand boresight quaternions into detector pointing weights and # pixel numbers pipeline_tools.expand_pointing(args, comm, data) # Optionally rewrite the noise PSD:s in each observation to include # elevation-dependence pipeline_tools.get_elevation_noise(args, comm, data) # Purge the pointing if we are NOT going to export the # data to a TIDAS volume if (args.tidas is None) and (args.spt3g is None): for ob in data.obs: tod = ob["tod"] tod.free_radec_quats() # Prepare auxiliary information for distributed map objects signalname = pipeline_tools.scan_sky_signal(args, comm, data, "signal") # Set up objects to take copies of the TOD at appropriate times totalname, totalname_freq = setup_sigcopy(args) # Loop over Monte Carlos firstmc = args.MC_start nsimu = args.MC_count freqs = [float(freq) for freq in args.freq.split(",")] nfreq = len(freqs) for mc in range(firstmc, firstmc + nsimu): pipeline_tools.simulate_atmosphere(args, comm, data, mc, totalname) # Loop over frequencies with identical focal planes and identical # atmospheric noise. for ifreq, freq in enumerate(freqs): if comm.world_rank == 0: log.info( "Processing frequency {}GHz {} / {}, MC = {}".format( freq, ifreq + 1, nfreq, mc ) ) # Make a copy of the atmosphere so we can scramble the gains and apply # frequency-dependent scaling. pipeline_tools.copy_signal(args, comm, data, totalname, totalname_freq) pipeline_tools.scale_atmosphere_by_frequency( args, comm, data, freq=freq, mc=mc, cache_name=totalname_freq ) pipeline_tools.update_atmospheric_noise_weights(args, comm, data, freq, mc) # Add previously simulated sky signal to the atmospheric noise. pipeline_tools.add_signal( args, comm, data, totalname_freq, signalname, purge=(nsimu == 1) ) mcoffset = ifreq * 1000000 pipeline_tools.simulate_noise( args, comm, data, mc + mcoffset, totalname_freq ) pipeline_tools.scramble_gains( args, comm, data, mc + mcoffset, totalname_freq ) outpath = setup_output(args, comm, mc + mcoffset, freq) # Bin and destripe maps pipeline_tools.apply_mapmaker( args, comm, data, outpath, totalname_freq, time_comms=time_comms, telescope_data=telescope_data, first_call=(mc == firstmc), ) if args.apply_polyfilter or args.apply_groundfilter: # Filter signal pipeline_tools.apply_polyfilter(args, comm, data, totalname_freq) pipeline_tools.apply_groundfilter(args, comm, data, totalname_freq) # Bin filtered maps pipeline_tools.apply_mapmaker( args, comm, data, outpath, totalname_freq, time_comms=time_comms, telescope_data=telescope_data, first_call=False, extra_prefix="filtered", bin_only=True, ) gt.stop_all() if mpiworld is not None: mpiworld.barrier() runtime = gt.seconds("toast_benchmark (science work)") prefactor = 1.0e-3 kilo_samples = 1.0e-3 * total_samples sample_factor = 1.2 det_factor = 2.0 metric = ( prefactor * n_detector ** det_factor * kilo_samples ** sample_factor / (n_nodes * runtime) ) if rank == 0: msg = "Science Metric: {:0.1e} * ({:d}**{:0.2f}) * ({:0.3e}**{:0.3f}) / ({:0.1f} * {}) = {:0.2f}".format( prefactor, n_detector, det_factor, kilo_samples, sample_factor, runtime, n_nodes, metric, ) log.info("") log.info(msg) log.info("") with open(os.path.join(args.outdir, "log"), "a") as f: f.write(msg) f.write("\n\n") timer = Timer() timer.start() alltimers = gather_timers(comm=mpiworld) if comm.world_rank == 0: out = os.path.join(args.outdir, "timing") dump_timing(alltimers, out) with open(os.path.join(args.outdir, "log"), "a") as f: f.write("Copy of Global Timers:\n") with open("{}.csv".format(out), "r") as t: f.write(t.read()) timer.stop() timer.report("Gather and dump timing info") return
def main(): log = Logger.get() gt = GlobalTimers.get() gt.start("toast_ground_sim (total)") timer0 = Timer() timer0.start() mpiworld, procs, rank, comm = get_comm() args, comm = parse_arguments(comm) # Initialize madam parameters madampars = setup_madam(args) # Load and broadcast the schedule file schedules = load_schedule(args, comm) # Load the weather and append to schedules load_weather(args, comm, schedules) # load or simulate the focalplane detweights = load_focalplanes(args, comm, schedules) # Create the TOAST data object to match the schedule. This will # include simulating the boresight pointing. data, telescope_data = create_observations(args, comm, schedules) # Split the communicator for day and season mapmaking time_comms = get_time_communicators(args, comm, data) # Expand boresight quaternions into detector pointing weights and # pixel numbers expand_pointing(args, comm, data) # Purge the pointing if we are NOT going to export the # data to a TIDAS volume if (args.tidas is None) and (args.spt3g is None): for ob in data.obs: tod = ob["tod"] tod.free_radec_quats() # Prepare auxiliary information for distributed map objects _, localsm, subnpix = get_submaps(args, comm, data) if args.pysm_model: focalplanes = [s.telescope.focalplane.detector_data for s in schedules] signalname = simulate_sky_signal(args, comm, data, focalplanes, subnpix, localsm, "signal") else: signalname = scan_sky_signal(args, comm, data, localsm, subnpix, "signal") # Set up objects to take copies of the TOD at appropriate times totalname, totalname_freq = setup_sigcopy(args) # Loop over Monte Carlos firstmc = args.MC_start nsimu = args.MC_count freqs = [float(freq) for freq in args.freq.split(",")] nfreq = len(freqs) for mc in range(firstmc, firstmc + nsimu): simulate_atmosphere(args, comm, data, mc, totalname) # Loop over frequencies with identical focal planes and identical # atmospheric noise. for ifreq, freq in enumerate(freqs): if comm.world_rank == 0: log.info("Processing frequency {}GHz {} / {}, MC = {}".format( freq, ifreq + 1, nfreq, mc)) # Make a copy of the atmosphere so we can scramble the gains and apply # frequency-dependent scaling. copy_signal(args, comm, data, totalname, totalname_freq) scale_atmosphere_by_frequency(args, comm, data, freq=freq, mc=mc, cache_name=totalname_freq) update_atmospheric_noise_weights(args, comm, data, freq, mc) # Add previously simulated sky signal to the atmospheric noise. add_signal(args, comm, data, totalname_freq, signalname, purge=(nsimu == 1)) mcoffset = ifreq * 1000000 simulate_noise(args, comm, data, mc + mcoffset, totalname_freq) simulate_sss(args, comm, data, mc + mcoffset, totalname_freq) scramble_gains(args, comm, data, mc + mcoffset, totalname_freq) if (mc == firstmc) and (ifreq == 0): # For the first realization and frequency, optionally # export the timestream data. output_tidas(args, comm, data, totalname) output_spt3g(args, comm, data, totalname) outpath = setup_output(args, comm, mc + mcoffset, freq) # Bin and destripe maps apply_madam( args, comm, data, madampars, outpath, detweights, totalname_freq, freq=freq, time_comms=time_comms, telescope_data=telescope_data, first_call=(mc == firstmc), ) if args.apply_polyfilter or args.apply_groundfilter: # Filter signal apply_polyfilter(args, comm, data, totalname_freq) apply_groundfilter(args, comm, data, totalname_freq) # Bin filtered maps apply_madam( args, comm, data, madampars, outpath, detweights, totalname_freq, freq=freq, time_comms=time_comms, telescope_data=telescope_data, first_call=False, extra_prefix="filtered", bin_only=True, ) gt.stop_all() if mpiworld is not None: mpiworld.barrier() timer = Timer() timer.start() alltimers = gather_timers(comm=mpiworld) if comm.world_rank == 0: out = os.path.join(args.outdir, "timing") dump_timing(alltimers, out) timer.stop() timer.report("Gather and dump timing info") timer0.report_clear("toast_ground_sim.py") return