예제 #1
0
def get_ImageData(num_model, geometry):
    '''Returns an ImageData relative to geometry with the model num_model from tomophantom
    
    :param num_model: model number
    :type num_model: int
    :param geometry: geometrical info that describes the phantom
    :type geometry: ImageGeometry
    Example usage:
    
    .. code-block:: python
      
      ndim = 2
      N=128
      angles = np.linspace(0, 360, 50, True, dtype=np.float32)
      offset = 0.4
      channels = 3
        
      if ndim == 2:
          ag = AcquisitionGeometry.create_Cone2D((offset,-100), (offset,100))
          ag.set_panel(N)
            
      else:
          ag = AcquisitionGeometry.create_Cone3D((offset,-100, 0), (offset,100,0))
          ag.set_panel((N,N-2))
        
      ag.set_channels(channels)
      ag.set_angles(angles, angle_unit=AcquisitionGeometry.DEGREE)
        
        
      ig = ag.get_ImageGeometry()
      num_model = 1
      phantom = TomoPhantom.get_ImageData(num_model=num_model, geometry=ig)

    
    '''
    ig = geometry.copy()
    ig.set_labels(DataOrder.TOMOPHANTOM_IG_LABELS)
    num_dims = len(ig.dimension_labels)
    
    if ImageGeometry.CHANNEL in ig.dimension_labels:
        if not is_model_temporal(num_model):
            raise ValueError('Selected model {} is not a temporal model, please change your selection'.format(num_model))
        if num_dims == 4:
            # 3D+time for tomophantom
            # output dimensions channel and then spatial, 
            # e.g. [ 'channel', 'vertical', 'horizontal_y', 'horizontal_x' ]
            num_model = num_model
            shape = tuple(ig.shape[1:])
            phantom_arr = TomoP3D.ModelTemporal(num_model, shape, path_library3D)
        elif num_dims == 3:
            # 2D+time for tomophantom
            # output dimensions channel and then spatial, 
            # e.g. [ 'channel', 'horizontal_y', 'horizontal_x' ]
            N = ig.shape[1]
            num_model = num_model
            phantom_arr = TomoP2D.ModelTemporal(num_model, ig.shape[1], path_library2D)
        else:
            raise ValueError('Wrong ImageGeometry')
        if ig.channels != phantom_arr.shape[0]:
            raise ValueError('The required model {} has {} channels. The ImageGeometry you passed has {}. Please update your ImageGeometry.'\
                .format(num_model, ig.channels, phantom_arr.shape[0]))
    else:
        if num_dims == 3:
            # 3D
            num_model = num_model
            phantom_arr = TomoP3D.Model(num_model, ig.shape, path_library3D)
        elif num_dims == 2:
            # 2D
            if ig.shape[0] != ig.shape[1]:
                raise ValueError('Can only handle square ImageData, got shape'.format(ig.shape))
            N = ig.shape[0]
            num_model = num_model
            phantom_arr = TomoP2D.Model(num_model, N, path_library2D)
        else:
            raise ValueError('Wrong ImageGeometry')

    
    im_data = ImageData(phantom_arr, geometry=ig, suppress_warning=True)
    im_data.reorder(list(geometry.dimension_labels))
    return im_data
예제 #2
0
    print("MAE" , mae(res1, res2))
    np.testing.assert_array_almost_equal(res1.as_array(), res2.as_array(), decimal=3)    
    
    ###################################################################
    ###################################################################
    ###################################################################
    ###################################################################
    print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)") 
        
    print ("Building 3D phantom using TomoPhantom software")
    model = 13 # select a model number from the library
    N_size = 64 # Define phantom dimensions using a scalar value (cubic phantom)
    path = os.path.dirname(tomophantom.__file__)
    path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
    #This will generate a N_size x N_size x N_size phantom (3D)
    phantom_tm = TomoP3D.Model(model, N_size, path_library3D)    
    
    ig = ImageGeometry(N_size, N_size, N_size)
    data = ig.allocate()
    data.fill(phantom_tm)
        
    n1 = TestData.random_noise(data.as_array(), mode = 'gaussian', seed = 10)

    noisy_data = ig.allocate()
    noisy_data.fill(n1)    
    
    # Show Ground Truth and Noisy Data
    plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    plt.imshow(data.as_array()[32])
    plt.title('Ground Truth')
예제 #3
0
    def test_compare_regularisation_toolkit_tomophantom(self):

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)")

        print("Building 3D phantom using TomoPhantom software")
        model = 13  # select a model number from the library
        N_size = 64  # Define phantom dimensions using a scalar value (cubic phantom)
        path = os.path.dirname(tomophantom.__file__)
        path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
        #This will generate a N_size x N_size x N_size phantom (3D)
        phantom_tm = TomoP3D.Model(model, N_size, path_library3D)

        ig = ImageGeometry(N_size, N_size, N_size)
        data = ig.allocate()
        data.fill(phantom_tm)

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        print("Use tau as an array of ones")
        # CIL_TotalVariation no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None, info=True)
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)
        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=3)

        # CIL_FGP_TV no tolerance
        #g_CIL = FGP_TV(ig, alpha, iters, tolerance=None, info=True)
        g_CIL.tolerance = None
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        ###################################################################
        ###################################################################
        ###################################################################
        ###################################################################

        data = dataexample.PEPPERS.get(size=(256, 256))
        ig = data.geometry
        ag = ig

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-8
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)