예제 #1
0
파일: rotation.py 프로젝트: AaronBM/tomopy
def _adjust_hist_limits(tomo, theta, ind, mask, emission):
    # Make an initial reconstruction to adjust histogram limits.
    rec = recon(tomo, theta, emission=emission, algorithm='gridrec')

    # Apply circular mask.
    if mask is True:
        rec = circ_mask(rec, axis=0)

    # Adjust histogram boundaries according to reconstruction.
    return _adjust_hist_min(rec.min()), _adjust_hist_max(rec.max())
예제 #2
0
def _adjust_hist_limits(tomo, theta, ind, mask, emission):
    # Make an initial reconstruction to adjust histogram limits.
    rec = recon(tomo, theta, emission=emission, algorithm='gridrec')

    # Apply circular mask.
    if mask is True:
        rec = circ_mask(rec, axis=0)

    # Adjust histogram boundaries according to reconstruction.
    return _adjust_hist_min(rec.min()), _adjust_hist_max(rec.max())
예제 #3
0
파일: rotation.py 프로젝트: AaronBM/tomopy
def _find_center_cost(
        center, tomo, theta, ind, hmin, hmax, mask, ratio, emission):
    """
    Cost function used for the ``find_center`` routine.
    """
    logger.info('trying center: %s', center)
    center = np.array(center, dtype='float32')
    rec = recon(
        tomo[:, ind:ind + 1, :], theta, center, emission=emission, algorithm='gridrec')

    if mask is True:
        rec = circ_mask(rec, axis=0)

    hist, e = np.histogram(rec, bins=64, range=[hmin, hmax])
    hist = hist.astype('float32') / rec.size + 1e-12
    return -np.dot(hist, np.log2(hist))
예제 #4
0
def _find_center_cost(center, tomo, theta, ind, hmin, hmax, mask, ratio,
                      emission):
    """
    Cost function used for the ``find_center`` routine.
    """
    logger.info('trying center: %s', center)
    center = np.array(center, dtype='float32')
    rec = recon(tomo[:, ind:ind + 1, :],
                theta,
                center,
                emission=emission,
                algorithm='gridrec')

    if mask is True:
        rec = circ_mask(rec, axis=0)

    hist, e = np.histogram(rec, bins=64, range=[hmin, hmax])
    hist = hist.astype('float32') / rec.size + 1e-12
    return -np.dot(hist, np.log2(hist))
예제 #5
0
파일: rotation.py 프로젝트: AaronBM/tomopy
def write_center(
        tomo, theta, dpath='tmp/center', cen_range=None, ind=None,
        emission=True, mask=False, ratio=1.):
    """
    Save images reconstructed with a range of rotation centers.

    Helps finding the rotation center manually by visual inspection of
    images reconstructed with a set of different centers.The output
    images are put into a specified folder and are named by the
    center position corresponding to the image.

    Parameters
    ----------
    tomo : ndarray
        3D tomographic data.
    theta : array
        Projection angles in radian.
    dpath : str, optional
        Folder name to save output images.
    cen_range : list, optional
        [start, end, step] Range of center values.
    ind : int, optional
        Index of the slice to be used for reconstruction.
    emission : bool, optional
        Determines whether data is emission or transmission type.
    mask : bool, optional
        If ``True``, apply a circular mask to the reconstructed image to
        limit the analysis into a circular region.
    ratio : float, optional
        The ratio of the radius of the circular mask to the edge of the
        reconstructed image.
    """
    tomo = dtype.as_float32(tomo)
    theta = dtype.as_float32(theta)

    dx, dy, dz = tomo.shape
    if ind is None:
        ind = dy / 2
    if cen_range is None:
        center = np.arange(dz / 2 - 5, dz / 2 + 5, 0.5)
    else:
        center = np.arange(cen_range[0], cen_range[1], cen_range[2] / 2.)

    stack = np.zeros((dx, len(center), dz))
    for m in range(center.size):
        stack[:, m, :] = tomo[:, ind, :]

    # Reconstruct the same slice with a range of centers.
    rec = recon(
        stack, theta, center=center, emission=emission, algorithm='gridrec')

    # Apply circular mask.
    if mask is True:
        rec = circ_mask(rec, axis=0)

    # Save images to a temporary folder.
    for m in range(len(center)):
        if m % 2 == 0:  # 2 slices same bec of gridrec.
            fname = os.path.join(
                dpath, str('{:.2f}'.format(center[m]) + '.tiff'))
            write_tiff(rec[m:m + 1], fname=fname, overwrite=True)
예제 #6
0
def write_center(tomo,
                 theta,
                 dpath='tmp/center',
                 cen_range=None,
                 ind=None,
                 emission=True,
                 mask=False,
                 ratio=1.):
    """
    Save images reconstructed with a range of rotation centers.

    Helps finding the rotation center manually by visual inspection of
    images reconstructed with a set of different centers.The output
    images are put into a specified folder and are named by the
    center position corresponding to the image.

    Parameters
    ----------
    tomo : ndarray
        3D tomographic data.
    theta : array
        Projection angles in radian.
    dpath : str, optional
        Folder name to save output images.
    cen_range : list, optional
        [start, end, step] Range of center values.
    ind : int, optional
        Index of the slice to be used for reconstruction.
    emission : bool, optional
        Determines whether data is emission or transmission type.
    mask : bool, optional
        If ``True``, apply a circular mask to the reconstructed image to
        limit the analysis into a circular region.
    ratio : float, optional
        The ratio of the radius of the circular mask to the edge of the
        reconstructed image.
    """
    tomo = dtype.as_float32(tomo)
    theta = dtype.as_float32(theta)

    dx, dy, dz = tomo.shape
    if ind is None:
        ind = dy / 2
    if cen_range is None:
        center = np.arange(dz / 2 - 5, dz / 2 + 5, 0.5)
    else:
        center = np.arange(cen_range[0], cen_range[1], cen_range[2] / 2.)

    stack = np.zeros((dx, len(center), dz))
    for m in range(center.size):
        stack[:, m, :] = tomo[:, ind, :]

    # Reconstruct the same slice with a range of centers.
    rec = recon(stack,
                theta,
                center=center,
                emission=emission,
                algorithm='gridrec')

    # Apply circular mask.
    if mask is True:
        rec = circ_mask(rec, axis=0)

    # Save images to a temporary folder.
    for m in range(len(center)):
        if m % 2 == 0:  # 2 slices same bec of gridrec.
            fname = os.path.join(dpath,
                                 str('{:.2f}'.format(center[m]) + '.tiff'))
            write_tiff(rec[m:m + 1], fname=fname, overwrite=True)