예제 #1
0
def transform_scalars(dataset, SHIFT=None, rotation_angle=90.0):
    from tomviz import utils
    from scipy import ndimage
    import numpy as np

    data_py = utils.get_array(dataset)  # Get data as numpy array.

    if data_py is None:  #Check if data exists
        raise RuntimeError("No data array found!")
    if SHIFT is None:
        SHIFT = np.zeros(len(data_py.shape), dtype=np.int)
    data_py_return = np.empty_like(data_py)
    ndimage.interpolation.shift(data_py, SHIFT, order=0, output=data_py_return)

    rotation_axis = 2  # This operator always assumes the rotation axis is Z
    if rotation_angle == []:  # If tilt angle not given, assign it to 90 degrees.
        rotation_angle = 90

    axis1 = (rotation_axis + 1) % 3
    axis2 = (rotation_axis + 2) % 3
    axes = (axis1, axis2)
    shape = utils.rotate_shape(data_py_return, rotation_angle, axes=axes)
    data_py_return2 = np.empty(shape, data_py_return.dtype, order='F')
    ndimage.interpolation.rotate(data_py_return,
                                 rotation_angle,
                                 output=data_py_return2,
                                 axes=axes)

    utils.set_array(dataset, data_py_return2)
예제 #2
0
파일: Rotate3D.py 프로젝트: tjcorona/tomviz
def transform_scalars(dataset, rotation_angle=90.0, rotation_axis=0):

    from tomviz import utils
    import numpy as np
    from scipy import ndimage

    data_py = utils.get_array(dataset)  #get data as numpy array

    if data_py is None:  #Check if data exists
        raise RuntimeError("No data array found!")

    if rotation_axis == []:  #If tilt axis is not given, assign one.
        # Find the smallest array dimension, assume it is the tilt angle axis.
        if data_py.ndim >= 2:
            rotation_axis = np.argmin(data_py.shape)
        else:
            raise RuntimeError("Data Array is not 2 or 3 dimensions!")

    if rotation_angle == []:  # If tilt angle not given, assign it to 90 degrees.
        rotation_angle = 90

    print('Rotating Dataset...')

    axis1 = (rotation_axis + 1) % 3
    axis2 = (rotation_axis + 2) % 3
    axes = (axis1, axis2)
    shape = utils.rotate_shape(data_py, rotation_angle, axes=axes)
    data_py_return = np.empty(shape, data_py.dtype, order='F')
    ndimage.interpolation.rotate(data_py,
                                 rotation_angle,
                                 output=data_py_return,
                                 axes=axes)

    utils.set_array(dataset, data_py_return)
    print('Rotation Complete')
예제 #3
0
def transform_scalars(dataset, SHIFT=None, rotation_angle=90.0):
    from tomviz import utils
    from scipy import ndimage
    import numpy as np

    data_py = utils.get_array(dataset) # Get data as numpy array.

    if data_py is None: #Check if data exists
        raise RuntimeError("No data array found!")
    if SHIFT is None:
        SHIFT = np.zeros(len(data_py.shape), dtype=np.int)
    data_py_return = np.empty_like(data_py)
    ndimage.interpolation.shift(data_py, SHIFT, order=0, output=data_py_return)

    rotation_axis = 2 # This operator always assumes the rotation axis is Z
    if rotation_angle == []: # If tilt angle not given, assign it to 90 degrees.
        rotation_angle = 90

    axis1 = (rotation_axis + 1) % 3
    axis2 = (rotation_axis + 2) % 3
    axes = (axis1, axis2)
    shape = utils.rotate_shape(data_py_return, rotation_angle, axes=axes)
    data_py_return2 = np.empty(shape, data_py_return.dtype, order='F')
    ndimage.interpolation.rotate(
        data_py_return, rotation_angle, output=data_py_return2, axes=axes)

    utils.set_array(dataset, data_py_return2)
    def transform_scalars(self, dataset):
        """
          Automatic align the tilt axis to horizontal direction (x-axis)
        """
        self.progress.maximum = 1

        # Get Tilt Series
        tiltSeries = utils.get_array(dataset)

        if tiltSeries is None: #Check if data exists
            raise RuntimeError("No data array found!")

        (Nslice, Nray, Nproj) = tiltSeries.shape
        Intensity = np.zeros(tiltSeries.shape)

        self.progress.maximum = Nproj + 131 #coarse(90)+fine(41)
        step = 0

        self.progress.message = 'Initialization'
        #take FFT of all projections
        for i in range(Nproj):
            self.progress.message = ('Taking Fourier transform of tilt image'
                                     'No.%d/%d' % (i + 1, Nproj))
            tiltImage = tiltSeries[:, :, i]
            tiltImage_F = np.abs(np.fft.fft2(tiltImage))
            if (i == 0):
                temp = tiltImage_F[0, 0]
            Intensity[:, :, i] = np.fft.fftshift(tiltImage_F / temp)
            step += 1
            self.progress.value = step

        #rescale intensity
        Intensity = np.power(Intensity, 0.2)

        #calculate variation itensity image
        Intensity_var = np.var(Intensity, axis=2)
        #search angles
        coarseStep = 2
        fineStep = 0.1
        coarseAngles = np.arange(-90, 90, coarseStep)

        Nx = Intensity_var.shape[0]
        Ny = Intensity_var.shape[1]
        N = np.round(np.min([Nx, Ny]) // 3)

        #coarse search
        I = np.zeros((coarseAngles.size, N))
        for a in range(coarseAngles.size):
            if self.canceled:
                return
            self.progress.message = ('Calculating line intensity at angle %f'
                                     'degree' % (coarseAngles[a]))
            I[a, :] = calculateLineIntensity(Intensity_var, coarseAngles[a], N)
            step += 1
            self.progress.value = step

        I_sum = np.sum(I, axis=1)
        minIntensityIndex = np.argmin(I_sum)
        rot_ang = coarseAngles[minIntensityIndex]

        #now refine
        fineAngles = np.arange(rot_ang - coarseStep,
                               rot_ang + coarseStep + fineStep, fineStep)

        #fine search
        I = np.zeros((fineAngles.size, N))
        for a in range(fineAngles.size):
            if self.canceled:
                return
            self.progress.message = ('Calculating line intensity at angle %f'
                                     'degree' % (fineAngles[a]))

            I[a, :] = calculateLineIntensity(Intensity_var, fineAngles[a], N)
            step += 1
            self.progress.value = step

        I_sum = np.sum(I, axis=1)
        minIntensityIndex = np.argmin(I_sum)
        rot_ang = fineAngles[minIntensityIndex]

        self.progress.message = 'Rotating tilt series'
        axes = ((0, 1))
        shape = utils.rotate_shape(tiltSeries, -rot_ang, axes=axes)
        result = np.empty(shape, tiltSeries.dtype, order='F')
        ndimage.interpolation.rotate(
            tiltSeries, -rot_ang, axes=axes, output=result)

        print("rotate tilt series by %f degrees" % -rot_ang)

        # Set the result as the new scalars.
        utils.set_array(dataset, result)
    def transform_scalars(self, dataset):
        """
          Automatic align the tilt axis to horizontal direction (x-axis)
        """
        self.progress.maximum = 1

        # Get Tilt Series
        tiltSeries = utils.get_array(dataset)

        if tiltSeries is None:  #Check if data exists
            raise RuntimeError("No data array found!")

        (Nslice, Nray, Nproj) = tiltSeries.shape
        Intensity = np.zeros(tiltSeries.shape)

        self.progress.maximum = Nproj + 131  #coarse(90)+fine(41)
        step = 0

        self.progress.message = 'Initialization'
        #take FFT of all projections
        for i in range(Nproj):
            self.progress.message = ('Taking Fourier transform of tilt image'
                                     'No.%d/%d' % (i + 1, Nproj))
            tiltImage = tiltSeries[:, :, i]
            tiltImage_F = np.abs(np.fft.fft2(tiltImage))
            if (i == 0):
                temp = tiltImage_F[0, 0]
            Intensity[:, :, i] = np.fft.fftshift(tiltImage_F / temp)
            step += 1
            self.progress.value = step

        #rescale intensity
        Intensity = np.power(Intensity, 0.2)

        #calculate variation itensity image
        Intensity_var = np.var(Intensity, axis=2)
        #search angles
        coarseStep = 2
        fineStep = 0.1
        coarseAngles = np.arange(-90, 90, coarseStep)

        Nx = Intensity_var.shape[0]
        Ny = Intensity_var.shape[1]
        N = np.round(np.min([Nx, Ny]) // 3)

        #coarse search
        I = np.zeros((coarseAngles.size, N))
        for a in range(coarseAngles.size):
            if self.canceled:
                return
            self.progress.message = ('Calculating line intensity at angle %f'
                                     'degree' % (coarseAngles[a]))
            I[a, :] = calculateLineIntensity(Intensity_var, coarseAngles[a], N)
            step += 1
            self.progress.value = step

        I_sum = np.sum(I, axis=1)
        minIntensityIndex = np.argmin(I_sum)
        rot_ang = coarseAngles[minIntensityIndex]

        #now refine
        fineAngles = np.arange(rot_ang - coarseStep,
                               rot_ang + coarseStep + fineStep, fineStep)

        #fine search
        I = np.zeros((fineAngles.size, N))
        for a in range(fineAngles.size):
            if self.canceled:
                return
            self.progress.message = ('Calculating line intensity at angle %f'
                                     'degree' % (fineAngles[a]))

            I[a, :] = calculateLineIntensity(Intensity_var, fineAngles[a], N)
            step += 1
            self.progress.value = step

        I_sum = np.sum(I, axis=1)
        minIntensityIndex = np.argmin(I_sum)
        rot_ang = fineAngles[minIntensityIndex]

        self.progress.message = 'Rotating tilt series'
        axes = ((0, 1))
        shape = utils.rotate_shape(tiltSeries, -rot_ang, axes=axes)
        result = np.empty(shape, tiltSeries.dtype, order='F')
        ndimage.interpolation.rotate(tiltSeries,
                                     -rot_ang,
                                     axes=axes,
                                     output=result)

        print("rotate tilt series by %f degrees" % -rot_ang)

        # Set the result as the new scalars.
        utils.set_array(dataset, result)