예제 #1
0
def get_datasets(opentraj_root, dataset_names):
    datasets = {}

    # Make a temp dir to store and load trajdatasets (no postprocess anymore)
    trajdataset_dir = os.path.join(opentraj_root, 'trajdatasets__temp')
    if not os.path.exists(trajdataset_dir): os.makedirs(trajdataset_dir)

    for dataset_name in dataset_names:
        dataset_h5_file = os.path.join(trajdataset_dir, dataset_name + '.h5')
        if os.path.exists(dataset_h5_file):
            datasets[dataset_name] = TrajDataset()
            datasets[dataset_name].data = pd.read_pickle(dataset_h5_file)
            datasets[dataset_name].title = dataset_name
            print("loading dataset from pre-processed file: ", dataset_h5_file)
            continue

        print("Loading dataset:", dataset_name)

        # ========== ETH ==============
        if 'eth-univ' == dataset_name.lower():
            eth_univ_root = os.path.join(opentraj_root, 'datasets/ETH/seq_eth/obsmat.txt')
            datasets[dataset_name] = load_eth(eth_univ_root, title=dataset_name, scene_id='Univ',
                                              use_kalman=True)

        elif 'eth-hotel' == dataset_name.lower():
            eth_hotel_root = os.path.join(opentraj_root, 'datasets/ETH/seq_hotel/obsmat.txt')
            datasets[dataset_name] = load_eth(eth_hotel_root, title=dataset_name, scene_id='Hotel')
        # ******************************

        # ========== UCY ==============
        elif 'ucy-zara' == dataset_name.lower():  # all 3 zara sequences
            zara01_dir = os.path.join(opentraj_root, 'datasets/UCY/zara01')
            zara02_dir = os.path.join(opentraj_root, 'datasets/UCY/zara02')
            zara03_dir = os.path.join(opentraj_root, 'datasets/UCY/zara03')
            zara_01_ds = load_crowds(zara01_dir + '/annotation.vsp',
                                     homog_file=zara01_dir + '/H.txt',
                                     scene_id='1', use_kalman=True)
            zara_02_ds = load_crowds(zara02_dir + '/annotation.vsp',
                                     homog_file=zara02_dir + '/H.txt',
                                     scene_id='2', use_kalman=True)
            zara_03_ds = load_crowds(zara03_dir + '/annotation.vsp',
                                     homog_file=zara03_dir + '/H.txt',
                                     scene_id='3', use_kalman=True)
            datasets[dataset_name] = merge_datasets([zara_01_ds, zara_02_ds, zara_03_ds], dataset_name)

        elif 'ucy-univ' == dataset_name.lower():  # all 3 sequences
            st001_dir = os.path.join(opentraj_root, 'datasets/UCY/students01')
            st003_dir = os.path.join(opentraj_root, 'datasets/UCY/students03')
            uni_ex_dir = os.path.join(opentraj_root, 'datasets/UCY/uni_examples')
            #st001_ds = load_Crowds(st001_dir + '/students001.txt',homog_file=st001_dir + '/H.txt',scene_id='1',use_kalman=True)

            st001_ds = load_crowds(st001_dir + '/annotation.vsp',
                                   homog_file=st003_dir + '/H.txt',
                                   scene_id='1', use_kalman=True) 

            st003_ds = load_crowds(st003_dir + '/annotation.vsp',
                                   homog_file=st003_dir + '/H.txt',
                                   scene_id='3', use_kalman=True)
            uni_ex_ds = load_crowds(uni_ex_dir + '/annotation.vsp',
                                    homog_file=st003_dir + '/H.txt',
                                    scene_id='ex', use_kalman=True)
            datasets[dataset_name] = merge_datasets([st001_ds, st003_ds, uni_ex_ds], dataset_name)

        elif 'ucy-zara1' == dataset_name.lower():
            zara01_root = os.path.join(opentraj_root, 'datasets/UCY/zara01/obsmat.txt')
            datasets[dataset_name] = load_eth(zara01_root, title=dataset_name)

        elif 'ucy-zara2' == dataset_name.lower():
            zara02_root = os.path.join(opentraj_root, 'datasets/UCY/zara02/obsmat.txt')
            datasets[dataset_name] = load_eth(zara02_root, title=dataset_name)

        elif 'ucy-univ3' == dataset_name.lower():
            students03_root = os.path.join(opentraj_root, 'datasets/UCY/students03/obsmat.txt')
            datasets[dataset_name] = load_eth(students03_root, title=dataset_name)
        # ******************************

        # ========== HERMES ==============
        elif 'bn' in dataset_name.lower().split('-'):
            [_, exp_flow, cor_size] = dataset_name.split('-')
            if exp_flow == '1d' and cor_size == 'w180':   # 'Bottleneck-udf-180'
                bottleneck_path = os.path.join(opentraj_root, 'datasets/HERMES/Corridor-1D/uo-180-180-120.txt')
            elif exp_flow == '2d' and cor_size == 'w160':  # 'Bottleneck-bdf-160'
                bottleneck_path = os.path.join(opentraj_root, "datasets/HERMES/Corridor-2D/bo-360-160-160.txt")
            else:
                "Unknown Bottleneck dataset!"
                continue
            datasets[dataset_name] = load_bottleneck(bottleneck_path, sampling_rate=6,
                                                     use_kalman=True,
                                                     title=dataset_name)
        # ******************************

        # ========== PETS ==============
        elif 'pets-s2l1' == dataset_name.lower():
            pets_root = os.path.join(opentraj_root, 'datasets/PETS-2009/data')
            datasets[dataset_name] = load_pets(os.path.join(pets_root, 'annotations/PETS2009-S2L1.xml'),  #Pat:was PETS2009-S2L2
                                               calib_path=os.path.join(pets_root, 'calibration/View_001.xml'),
                                               sampling_rate=2,
                                               title=dataset_name)
        # ******************************

        # ========== GC ==============
        elif 'gc' == dataset_name.lower():
            gc_root = os.path.join(opentraj_root, 'datasets/GC/Annotation')
            datasets[dataset_name] = load_gcs(gc_root, world_coord=True, title=dataset_name,
                                              use_kalman=True
                                              )
        # ******************************

        # ========== InD ==============
        elif 'ind-1' == dataset_name.lower():
            ind_root = os.path.join(opentraj_root, 'datasets/InD/inD-dataset-v1.0/data')
            file_ids = range(7, 17 + 1)  # location_id = 1
            ind_1_datasets = []
            for id in file_ids:
                dataset_i = load_ind(os.path.join(ind_root, '%02d_tracks.csv' % id),
                                     scene_id='1-%02d' %id,
                                     sampling_rate=10,
                                     use_kalman=True)
                ind_1_datasets.append(dataset_i)
            datasets[dataset_name] = merge_datasets(ind_1_datasets, new_title=dataset_name)

        elif 'ind-2' == dataset_name.lower():
            ind_root = os.path.join(opentraj_root, 'datasets/InD/inD-dataset-v1.0/data')
            file_ids = range(18, 29 + 1)  # location_id = 1
            ind_2_datasets = []
            for id in file_ids:
                dataset_i = load_ind(os.path.join(ind_root, '%02d_tracks.csv' % id),
                                     scene_id='1-%02d' % id,
                                     sampling_rate=10,
                                     use_kalman=True)
                ind_2_datasets.append(dataset_i)
            datasets[dataset_name] = merge_datasets(ind_2_datasets, new_title=dataset_name)

        elif 'ind-3' == dataset_name.lower():
            ind_root = os.path.join(opentraj_root, 'datasets/InD/inD-dataset-v1.0/data')
            file_ids = range(30, 32 + 1)  # location_id = 1
            ind_3_datasets = []
            for id in file_ids:
                dataset_i = load_ind(os.path.join(ind_root, '%02d_tracks.csv' % id),
                                     scene_id='1-%02d' % id,
                                     sampling_rate=10,
                                     use_kalman=True)
                ind_3_datasets.append(dataset_i)
            datasets[dataset_name] = merge_datasets(ind_3_datasets, new_title=dataset_name)

        elif 'ind-4' == dataset_name.lower():
            ind_root = os.path.join(opentraj_root, 'datasets/InD/inD-dataset-v1.0/data')
            file_ids = range(0, 6 + 1)  # location_id = 1
            ind_4_datasets = []
            for id in file_ids:
                dataset_i = load_ind(os.path.join(ind_root, '%02d_tracks.csv' % id),
                                     scene_id='1-%02d' % id,
                                     sampling_rate=10,
                                     use_kalman=True)
                ind_4_datasets.append(dataset_i)
            datasets[dataset_name] = merge_datasets(ind_4_datasets, new_title=dataset_name)
        # ******************************

        # ========== KITTI ==============
        elif 'kitti' == dataset_name.lower():
            kitti_root = os.path.join(opentraj_root, 'datasets/KITTI/data')
            datasets[dataset_name] = load_kitti(kitti_root, title=dataset_name,
                                                use_kalman=True,
                                                sampling_rate=1)  # FixMe: apparently original_fps = 2.5
        # ******************************

        # ========== L-CAS ==============
        elif 'lcas-minerva' == dataset_name.lower():
            lcas_root = os.path.join(opentraj_root, 'datasets/L-CAS/data')
            datasets[dataset_name] = load_lcas(lcas_root, title=dataset_name,
                                               use_kalman=True,
                                               sampling_rate=1)  # FixMe: apparently original_fps = 2.5
        # ******************************

        # ========== Wild-Track ==============
        elif 'wildtrack' == dataset_name.lower():
            wildtrack_root = os.path.join(opentraj_root, 'datasets/Wild-Track/annotations_positions')
            datasets[dataset_name] = load_wildtrack(wildtrack_root, title=dataset_name,
                                                    use_kalman=True,
                                                    sampling_rate=1)  # original_annot_framerate=2
        # ******************************

        # ========== Edinburgh ==============
        elif 'edinburgh' in dataset_name.lower():
            edinburgh_dir = os.path.join(opentraj_root, 'datasets/Edinburgh/annotations')
            if 'edinburgh' == dataset_name.lower():   # all files
                # edinburgh_path = edinburgh_dir
                # select 1-10 Sep
                Ed_selected_days = ['01Sep', '02Sep', '04Sep', '05Sep', '06Sep', '10Sep']
                partial_ds = []
                for selected_day in Ed_selected_days:
                    edinburgh_path = os.path.join(edinburgh_dir, 'tracks.%s.txt' % selected_day)
                    partial_ds.append(load_edinburgh(edinburgh_path, title=dataset_name,
                                                     use_kalman=True, scene_id=selected_day,
                                                     sampling_rate=4)  # original_framerate=9
                                      )
                merge_datasets(partial_ds)

            else:
                seq_date = dataset_name.split('-')[1]
                edinburgh_path = os.path.join(edinburgh_dir, 'tracks.%s.txt' %seq_date)
            datasets[dataset_name] = load_edinburgh(edinburgh_path, title=dataset_name,
                                                    use_kalman=True,
                                                    sampling_rate=4)  # original_framerate=9
        # ******************************

        # ========== Town-Center ==============
        elif 'towncenter' == dataset_name.lower():
            towncenter_root = os.path.join(opentraj_root, 'datasets/Town-Center')
            # FixMe: might need Kalman Smoother
            datasets[dataset_name] = load_town_center(towncenter_root + '/TownCentre-groundtruth-top.txt',
                                                      calib_path=towncenter_root + '/TownCentre-calibration-ci.txt',
                                                      title=dataset_name,
                                                      use_kalman=True,
                                                      sampling_rate=10)  # original_framerate=25
            # ******************************

        # ========== SDD ==============
        elif 'sdd-' in dataset_name.lower():
            scene_name = dataset_name.split('-')[1]
            sdd_root = os.path.join(opentraj_root, 'datasets', 'SDD')
            annot_files_sdd = sorted(glob.glob(sdd_root + '/' + scene_name + "/**/annotations.txt", recursive=True))

            sdd_scales_yaml_file = os.path.join(sdd_root, 'estimated_scales.yaml')
            with open(sdd_scales_yaml_file, 'r') as f:
                scales_yaml_content = yaml.load(f, Loader=yaml.FullLoader)

            scene_datasets = []
            for file_name in annot_files_sdd:
                filename_parts = file_name.split('/')
                scene_name = filename_parts[-3]
                scene_video_id = filename_parts[-2]
                scale = scales_yaml_content[scene_name][scene_video_id]['scale']
                sdd_dataset_i = load_sdd(file_name, scale=scale,
                                         scene_id=scene_name + scene_video_id.replace('video', ''),
                                         drop_lost_frames=False,
                                         use_kalman=True,
                                         sampling_rate=12)  # original_framerate=30
                scene_datasets.append(sdd_dataset_i)
            scene_dataset = merge_datasets(scene_datasets, dataset_name)
            datasets[dataset_name] = scene_dataset
        # ******************************

        else:
            print("Error! invalid dataset name:", dataset_name)

        # save to h5 file
        datasets[dataset_name].data.to_pickle(dataset_h5_file)
        print("saving dataset into pre-processed file: ", dataset_h5_file)

    return datasets
예제 #2
0
    test_file = True
    if 'Train' in trajnet_file:
        test_file = False

    # find the corresponding file in SDD
    scene_name = trajnet_file[trajnet_file.rfind('/') + 1:-6]
    scene_id = int(trajnet_file[-5])
    sdd_file = os.path.join(opentraj_root, 'datasets/SDD/', scene_name, 'video%d' % scene_id, 'annotations.txt')
    if not os.path.exists(sdd_file):
        # print('Error: sdd file does not exist:', sdd_file)
        continue

    # read from trajnet
    trajnet_dataset = load_trajnet(trajnet_file)
    # read from SDD
    sdd_dataset = load_sdd(sdd_file)

    # plot them for manula debug
    # fig, axes = plt.subplots(nrows=2, ncols=1)
    # trajnet_dataset.data.plot.scatter("pos_x", "pos_y", ax=axes[0])
    # sdd_dataset.data.plot.scatter("pos_x", "pos_y", ax=axes[1])
    # plt.show()

    # take one traj from trajnet
    trajnet_ids = trajnet_dataset.get_agent_ids()
    # plt.figure()
    suggested_scale = -1
    for trajnet_id in trajnet_ids:
        # trajnet_id = trajnet_ids[3]
        trajnet_traj = trajnet_dataset.get_trajectories([trajnet_id])[0]
        # trajnet_traj_0.plot.scatter("pos_x", "pos_y", ax=axes[0], color='red')
예제 #3
0
## SDD datasets
scenes = [
    # ['bookstore', 'video0'],
    # ['bookstore', 'video1'],
    ['coupa', 'video3']
]
sdd_scales_yaml_file = os.path.join(OPENTRAJ_ROOT, 'datasets/SDD',
                                    'estimated_scales.yaml')
with open(sdd_scales_yaml_file, 'r') as f:
    scales_yaml_content = yaml.load(f, Loader=yaml.FullLoader)
for scene_i in scenes:
    scale = scales_yaml_content[scene_i[0]][scene_i[1]]['scale']
    sdd_dataset_i = load_sdd(
        os.path.join(OPENTRAJ_ROOT, "datasets/SDD", scene_i[0], scene_i[1],
                     "annotations.txt"),
        scene_id="SDD-" + scene_i[0] + scene_i[1],
        title="SDD-" + scene_i[0] + "-" + scene_i[1][-1],  # use_kalman=True,
        scale=scale,
        drop_lost_frames=False,
        sampling_rate=6)  # original fps=30
    datasets.append(sdd_dataset_i)

# annot_file = os.path.join(OPENTRAJ_ROOT, 'datasets/ETH/seq_eth/obsmat.txt')
# datasets.append(load_eth(annot_file, title="ETH-Univ"))

eth_hotel_annot_file = os.path.join(OPENTRAJ_ROOT,
                                    'datasets/ETH/seq_hotel/obsmat.txt')
datasets.append(load_eth(eth_hotel_annot_file, title="ETH-Hotel"))

zara01_annot_file = os.path.join(OPENTRAJ_ROOT,
                                 'datasets/UCY/zara01/annotation.vsp')
zara01 = load_crowds(zara01_annot_file,
예제 #4
0
def run(path, args):

    print("\n-----------------------------\nRunning test load\n-----------------------------")
    if 'eth/' in path.lower():
        print("[Javad]: Directly reading ETH Dataset (seq_eth):")
        traj_dataset = load_eth(path)
        all_trajs = traj_dataset.get_trajectories()
        all_frames = traj_dataset.get_frames()

    if '/sdd' in path.lower():
        if os.path.isdir(path):
            traj_dataset = load_sdd_dir(path)
        else:
            traj_dataset = load_sdd(path)
        trajs = traj_dataset.get_trajectories()
        print("total number of trajectories = ", len(trajs))

    if 'gc/' in path.lower():
        kwargs = {}
        for arg in args:
            if 'homog_file=' in arg:
                kwargs['homog_file'] = arg.replace("homog_file=", "")
        gc_dataset = load_gcs(path, **kwargs)
        trajs = gc_dataset.get_trajectories()
        print("GC: number of trajs = ", len(trajs))

    if 'pets-2009/' in path.lower():
        kwargs = {}
        for arg in args:
            if 'calib_path=' in arg:
                kwargs['calib_path'] = arg.replace("calib_path=", "")
        load_pets(path, **kwargs)

    if 'ind/' in path.lower():
        # Test the InD Dataset
        traj_dataset = load_ind(path)
        all_trajs = traj_dataset.get_trajectories()
        print('------------------------')
        print('First trajectory (InD)')
        print('------------------------')
        print(all_trajs[0])
        all_frames = traj_dataset.get_frames()

    if 'wild-track/' in path.lower():
        traj_dataset = load_wildtrack(path)

    if 'town' in path.lower():
        # Construct arguments dictionary
        kwargs = {}
        for arg in args:
            if 'calib_path=' in arg:
                kwargs['calib_path'] = arg.replace("calib_path=", "")

        # Test the Town Center Dataset
        traj_dataset = load_town_center(path, **kwargs)
        all_trajs = traj_dataset.get_trajectories()
        print('------------------------')
        print('First trajectory (Town Center)')
        print('------------------------')
        print(all_trajs[0])
        all_frames = traj_dataset.get_frames()

    if 'chaos' in path.lower():
        print("\n")
        print("ChAOS Style :")
        print(loaders.loadChAOS(path, args.separator))

        print("\n\n-----------------------------\nTest load done\n-----------------------------")