def analyze_dtw_vs_naive(): res = parse_matchpredictions(mp) shotprobdom,shotprobother,is_shot = res[3],res[4],res[5] res = parse_matchpredictions(naivematchpredictions) shotprobdomN,shotprobotherN = res[3],res[4] plot_roc_curves([1 if s == 1 else 0 for s in is_shot], [shotprobdom,shotprobdomN], #["k-NN with\nDynamic\nTime Warping", #"k-NN with\nNaive\nDistance Metric"] ["Our model","Naive baseline"])
shotprobs = list() for matchid in matchids: predictionsfile = '../../data/results/' + str(matchid) + postfix mp = np.loadtxt(predictionsfile) if dom: shotprobs.append(mp[:,3]) is_shot.append([1 if x == 1 else 0 for x in mp[:,5]]) else: shotprobs.append(mp[:,4]) is_shot.append([1 if x == -1 else 0 for x in mp[:,5]]) return shotprobs,is_shot #all_shotprobs = [pred for pred in s for s in shotprob] dom = False preds,ys = load_all_matches("_dtw",dom) preds_n = load_all_matches("_naive",dom)[0] scores = [roc_auc_score(y,p) for p,y in zip(preds,ys)] #plt.hist(scores) allpred = list([x for z in preds for x in z]) allpred_n = list([x for z in preds_n for x in z]) ally = list([x for z in ys for x in z]) print(len(ally)/69) print(sum(ally)/69) #Iprint(set(ally)) plot_roc_curves(ally,[allpred,allpred_n],["Ons model met DTW","Naief basismodel"]) #plot_a_fuckload_of_roc_curves(ys,[preds,preds_n],["Ons model met DTW","Naief basismodel"]) #plot_rocauc_hist(ys,[preds,preds_n],["Ons model met DTW","Naief basismodel"]) print kstest_roc_auc(ys,[preds,preds_n])