예제 #1
0
    def __call__(self, f: NativeFunction) -> Optional[str]:
        if str(f.func.name.name).endswith('_like') or str(
                f.func.name.name).startswith('new_'):
            return None

        name = native.name(f.func)
        native_sig = NativeSignature(f.func)

        if not any(
                isinstance(a.argument, TensorOptionsArguments)
                for a in native_sig.arguments()):
            return None

        native_tensor_args = [
            a for a in native_sig.arguments()
            if isinstance(a.argument, Argument)
            and a.argument.type.is_tensor_like()
        ]

        dispatcher_sig = DispatcherSignature.from_schema(f.func)

        sig: Union[NativeSignature, DispatcherSignature]
        sig = dispatcher_sig
        dispatcher_exprs = dispatcher_sig.exprs()
        dispatch_key = "c10::computeDispatchKey(dtype, layout, device)"

        if self.target is Target.DEFINITION:
            # I don't think there's actually a good reason to generate
            # these two cases differently
            # The first case could probably be improved though- it calls computeDispatchKeySet(),
            # which looks at TLS dispatch keys- there should not be any by the time we reach backend select.
            if native_tensor_args:
                tensor_args = ', '.join(a.name for a in native_tensor_args)
                compute_dk = f"""\
DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args});
  DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect);
  DispatchKeySet _dk = c10::impl::computeDispatchKeySet(_dk_set, _dk_mask);"""
            else:
                compute_dk = f"DispatchKeySet _dk = c10::DispatchKeySet({dispatch_key});"
            return f"""\
// aten::{f.func}
C10_ALWAYS_INLINE
{sig.defn(name)} {{
  static auto op = c10::Dispatcher::singleton()
    .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
    .typed<{dispatcher_sig.type()}>();
  {compute_dk}
  return op.redispatch(_dk, {', '.join(a.expr for a in dispatcher_exprs)});
}}
"""
        elif self.target is Target.REGISTRATION:
            return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));"""
        else:
            assert_never(self.target)
예제 #2
0
def gen_composite_view_copy_kernel(
        g: NativeFunctionsViewGroup) -> Optional[str]:

    if g.view_copy is None:
        return None
    # view_copy is a native signature, since we're generating an at::native:: kernel
    view_copy_sig = NativeSignature(g.view_copy.func)
    # view is a dispatcher signature, since we're calling into the at::_ops API
    view_sig = DispatcherSignature(g.view.func)

    view_api_name = g.view.func.name.unambiguous_name()
    exprs = ', '.join([
        e.expr
        for e in translate(view_copy_sig.arguments(), view_sig.arguments())
    ])

    # view ops today always return either a Tensor or a list of Tensors
    assert len(g.view.func.returns) == 1
    assert g.view.func.returns[0].type == BaseType(BaseTy.Tensor) \
           or g.view.func.returns[0].type == ListType(BaseType(BaseTy.Tensor), None)

    if g.view.func.returns[0].type == BaseType(BaseTy.Tensor):
        return_cloned_output = '''\
  return output.clone();'''
    else:
        # If the return type is a list, we need to clone each tensor in the list.
        return_cloned_output = f'''\
  {view_copy_sig.returns_type().cpp_type()} out_clone;
  for (const auto i : c10::irange(output.size())) {{
    out_clone.push_back(output[i].clone());
  }}
  return out_clone;'''

    # The default generated composite kernel for {view}_copy() operators just clones
    # the input tensor, and runs the underlying view on the clone.
    return f"""
예제 #3
0
def gen_unstructured(f: NativeFunction) -> List[str]:
    ns = list(f.dispatch.values())
    native_sig = NativeSignature(f.func)

    rs = []
    # Sometimes a function name shows up multiple times; only generate
    # it once!
    seen = set()
    for n in ns:
        if n in seen:
            continue
        if "legacy::" in n:
            continue
        seen.add(n)
        rs.append(f"TORCH_API {native_sig.decl(name=n)};")

    return rs
예제 #4
0
    def gen_one(self, f: NativeFunction) -> Optional[str]:
        assert not f.manual_kernel_registration

        if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(
                f):
            return None

        # TODO: Now, there is something interesting going on here.  In the code below,
        # we generate CompositeExplicitAutograd implementations of functional and inplace
        # based on the out implementation.  But in fact, out is definable by
        # functional too (just not very efficiently), and this is honestly the
        # MORE likely situation for a backend implementor.  How do we pick?
        # Well, taking a page from Haskell type classes and default methods,
        # we could conceivably register a circular definition (out in terms
        # of functional, and functional in terms of out) and just require
        # someone to implement one or the other.  We'd have to do a little bit
        # of work to not register one of these "weak" definitions unless there
        # is a strong definition somewhere in the DAG!  So it's not implemented yet.
        if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd and f.func.kind(
        ) is SchemaKind.out:
            # Never generate a default implementation for out, that's what you
            # have to define as a backend implementor
            return None

        # Note [Direct dispatch bindings]
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Signature of the non-dispatched function we'll expose in a header
        # (e.g., at::cpu::add).  We don't generate methods (TODO: do this
        # when CPUTensor class is a thing); nor do we generate fallback
        # bindings for manual_cpp_binding functions.
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        # Signature of the wrapper function we'll register to the dispatcher
        sig = NativeSignature(f.func, prefix="wrapper_")

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result

        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result

        elif self.target is Target.ANONYMOUS_DEFINITION:

            k = f.func.kind()

            # Construct the body of the wrapper function with signature sig
            sig_body = []
            # We'll use context to keep track of any variables we've brought
            # into scope while generating code
            context: List[Union[Binding, Expr]] = list(sig.arguments())

            # Initialize the class corresponding to this structured
            # operator; feeding it the output argument(s) if it is known
            if self.backend_index.dispatch_key is DispatchKey.Meta:
                class_name = f"structured_{meta.name(self.g)}_meta_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            elif self.backend_index.dispatch_key is DispatchKey.CompositeExplicitAutograd:
                # TODO: dedup this branch
                class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            else:
                metadata = self.backend_index.get_kernel(self.g)
                assert metadata is not None
                class_name = f"structured_{metadata.kernel}_{k.name}"
                parent_class = f"{self.cpp_namespace}::structured_{metadata.kernel}"

            if is_cuda_dispatch_key(self.backend_index.dispatch_key):
                device_check_args = itertools.chain(
                    f.func.arguments.out, f.func.arguments.flat_positional)
                sig_body.append(
                    RegisterDispatchKey.gen_device_check(
                        f.device_check, list(device_check_args), sig.name()))

            if k is SchemaKind.functional:
                sig_body.append(f"{class_name} op;")
            elif k is SchemaKind.inplace:
                sig_body.append(f"{class_name} op(self);")
            elif k is SchemaKind.out:
                out_args_str = ', '.join(a.name for a in f.func.arguments.out)
                sig_body.append(f"{class_name} op({out_args_str});")

            # Translate the input native arguments into structured
            # arguments for the meta call
            meta_exprs = ', '.join(e.expr for e in translate(
                context, structured.meta_arguments(self.g), method=False))

            if self.g.out.precomputed:
                # If this function group has precomputed elements, the meta function
                # returns a struct containing them which must be saved so that it
                # can be unpacked when generating code to call the impl.
                sig_body.append(f"auto precompute = op.meta({meta_exprs});")

                # Put all of the contents of the precompute struct into the context
                # so that translate will be able to return the correct args for the
                # call to the impl.
                for precomputed_elems in self.g.out.precomputed.replace.values(
                ):
                    for arg in precomputed_elems:
                        context.append(
                            Expr(
                                expr=f"precompute.{arg.name}",
                                type=structured.argument_type(arg,
                                                              binds=arg.name),
                            ))

                # Add a use of the precompute struct so FB internal compilers don't
                # complain that there is an unused variable.
                sig_body.append("(void)precompute;")
            else:
                sig_body.append(f"op.meta({meta_exprs});")

            # After running meta, op.outputs_ is guaranteed to be valid;
            # add it to the context
            out_args = structured.out_arguments(self.g)
            maybe_star = '*' if k is SchemaKind.functional else ''
            for i, out_arg in enumerate(out_args):
                assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type
                context.append(
                    Expr(
                        expr=f"{maybe_star}op.outputs_[{i}]",
                        # TODO: Stop hardcoding that the output type is a Tensor.  Note
                        # that for the codegen here this is fine because outputs_ is
                        # hardcoded to be tensor already
                        type=NamedCType(out_arg.nctype.name,
                                        MutRefCType(BaseCType(tensorT)))))

            # With the expanded context, do the impl call (if not a meta
            # function)
            if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd:
                # TODO: https://github.com/pytorch/pytorch/issues/53023
                out_sig_group = CppSignatureGroup.from_native_function(
                    self.g.out,
                    method=False,
                    fallback_binding=f.manual_cpp_binding)
                out_sig = out_sig_group.most_faithful_signature()
                api_name = out_sig.name()
                out_exprs = ', '.join(e.expr for e in translate(
                    context, out_sig.arguments(), method=False))
                # TODO: I think this means structured won't work with method
                # only functions (but maybe you're saved by faithful? iunno.)
                # NB: Originally I wrote this as an at::redispatch call, but
                # I got in trouble because that meant I needed a DispatchKeySet
                # in the wrapper function, which meant I needed a DispatchKeySet
                # in the DispatchKeyFunctions declarations, but the defined API
                # there does NOT permit a dispatch key set.  I think you can
                # probably unwind this by calling some function to do the TLS
                # fetch and get the DispatchKeySet when you don't have it, but
                # I didn't do it for this version
                sig_body.append(f"at::{api_name}({out_exprs});")
            elif self.backend_index.dispatch_key != DispatchKey.Meta:
                impl_exprs = ', '.join(e.expr for e in translate(
                    context, structured.impl_arguments(self.g), method=False))
                sig_body.append(f"op.impl({impl_exprs});")

            # Destructively return the final tensors
            # TODO: Do this in translate instead
            if k is SchemaKind.functional:
                if len(f.func.returns) == 1:
                    ret_expr = "std::move(op.outputs_[0]).take()"  # small optimization
                else:
                    moved = ', '.join(f"std::move(op.outputs_[{i}]).take()"
                                      for i in range(len(f.func.returns)))
                    ret_expr = f"std::make_tuple({moved})"
            elif k is SchemaKind.inplace:
                ret_expr = "self"
            elif k is SchemaKind.out:
                if len(f.func.returns) == 1:
                    ret_expr = f.func.arguments.out[0].name
                else:
                    refs = ', '.join(a.name for a in f.func.arguments.out)
                    ret_expr = f"std::forward_as_tuple({refs})"
            sig_body.append(f"return {ret_expr};")

            sig_body_str = "\n".join(sig_body)

            # For an overview of what this template code looks like, see
            # https://github.com/pytorch/rfcs/pull/9
            return f"""\
{self.gen_class(
f, k,
class_name=class_name,
parent_class=parent_class,
generate_super=self.g.out.structured_inherits is not None
)}

{sig.defn()} {{
{sig_body_str}
}}
"""

        elif self.target is Target.REGISTRATION:
            return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));'
        else:
            assert_never(self.target)
            # Silence mypy's "Missing return statement" error
            return None
예제 #5
0
    def gen_unstructured(self, f: NativeFunction) -> Optional[str]:
        inplace_meta = False
        if self.dispatch_key not in f.dispatch:
            if (self.dispatch_key == DispatchKey.Meta
                    and f.func.kind() is SchemaKind.inplace and
                    # Defer to composites for meta implementation
                    DispatchKey.CompositeImplicitAutograd not in f.dispatch
                    and DispatchKey.CompositeExplicitAutograd not in f.dispatch
                    and
                    # Inplace list operations are not supported
                    len(f.func.returns) == 1):
                inplace_meta = True
            else:
                return None
        if f.manual_kernel_registration:
            return None

        if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(
                f):
            return None

        sig = NativeSignature(f.func, prefix='wrapper_')

        name = sig.name()
        returns_type = sig.returns_type().cpp_type()
        args = sig.arguments()
        args_str = ', '.join(a.defn() for a in args)

        # See Note [Direct dispatch bindings]
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result
        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result
        elif self.target is Target.ANONYMOUS_DEFINITION:
            # short circuit for inplace_meta
            if inplace_meta:
                assert f.func.arguments.self_arg is not None
                self_arg_name = f.func.arguments.self_arg.argument.name
                # TODO: handle in place on tensor list
                return f"""
{returns_type} {name}({args_str}) {{
  TORCH_CHECK_NOT_IMPLEMENTED({self_arg_name}.is_meta(),
    "Cannot inplace into non-meta tensor with meta tensor argument");
  return {self_arg_name};
}}
"""

            impl_name = f"at::native::{f.dispatch[self.dispatch_key]}"

            args_exprs_str = ', '.join(a.name for a in args)

            device_guard = "// DeviceGuard omitted"  # default

            if f.device_guard and is_cuda_dispatch_key(self.dispatch_key):
                has_tensor_options = any(
                    isinstance(a.argument, TensorOptionsArguments)
                    for a in args)
                if has_tensor_options:
                    # kernel is creating a tensor
                    device_guard = """globalContext().lazyInitCUDA();
  const DeviceGuard device_guard(device_or_default(device));"""
                else:
                    # kernel is operating on existing tensors

                    # There is precedence for which argument we use to do
                    # device guard.  This describes the precedence order.
                    self_arg = [
                        f.func.arguments.self_arg.argument
                    ] if f.func.arguments.self_arg is not None else []
                    candidate_args = itertools.chain(
                        self_arg, f.func.arguments.out,
                        f.func.arguments.flat_positional)

                    # Only tensor like arguments are eligible
                    device_of = next(
                        (f'{a.name}'
                         for a in candidate_args if a.type.is_tensor_like()),
                        None)
                    if device_of is not None:
                        device_guard = f"const OptionalDeviceGuard device_guard(device_of({device_of}));"

            return f"""\
namespace {{

{returns_type} {name}({args_str}) {{
  {device_guard}
  return {impl_name}({args_exprs_str});
}}

}} // anonymous namespace
"""

        elif self.target is Target.REGISTRATION:
            if f.manual_kernel_registration:
                return None
            else:
                dispatcher_sig = DispatcherSignature.from_schema(f.func)
                payload = f"TORCH_FN({name})"
                return f'm.impl("{f.func.name}",\n{payload});\n'
        else:
            assert_never(self.target)