def run(source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str], gen_ts_lowerings: bool, node_base: str, node_base_hdr: Optional[str], tensor_class: str, tensor_class_hdr: str) -> None: # Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute() template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run) fm = make_file_manager(output_dir) native_yaml_path = os.path.join( pytorch_root, 'aten/src/ATen/native/native_functions.yaml') parsed_yaml = parse_native_yaml(native_yaml_path) native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices grouped_native_functions = get_grouped_native_functions(native_functions) def sort_native_function( f: Union[NativeFunctionsGroup, NativeFunction]) -> str: """ We sort the native function because of the note in concat_map_codegen. TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly. """ func = f.functional.func if isinstance( f, NativeFunctionsGroup) else f.func return str(func.name.name) grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function) parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace backend_indices = parsed_backend_yaml.backend_indices full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions) def concat_map_codegen( func: Callable[[NativeFunction], Sequence[str]], xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]], *, codegenInplaceVariant: bool = False) -> Iterator[str]: """ We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we only code-gen additional entries for the inplace variant for the native functions. Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and relu_ which will cause problems for relu. TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack. """ generated = set() def gen_key(func: FunctionSchema) -> Tuple[str, str]: # we want to generate unique entries for overloads of functional variants, # but not for inplace variants unless explicitly told `codegenInplaceVariant` return (func.name.name.base, func.name.overload_name) for x in xs: f = x.functional if isinstance(x, NativeFunctionsGroup) else x # For the 'or'd terms: # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items. # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item. # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item # as if they were the functional variants for one time. if f.func.name in full_codegen and \ (codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated): generated.add(gen_key(f.func)) for r in func(f): yield r selector = SelectiveBuilder.get_nop_selector() assert backend_key is not None class_name = backend_indices[backend_key].native_function_class_name() if impl_path is not None: error_on_missing_kernels(native_functions, backend_indices, backend_key, autograd_key, impl_path, full_codegen) assert class_name is not None # Generate nativefunction declarations gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key) # Generate Dispatcher registrations which hook up the nativefunctions for dispatch_key in [backend_key] if autograd_key is None else [ backend_key, autograd_key ]: gen_dispatcher_registrations(fm, output_dir, cpp_namespace, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector) # Generate native function impls that build IR nodes fm.write_with_template( f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: { 'includes': [ f'#include <{path}>' for path in [ tensor_class_hdr, "ATen/MetaFunctions.h", "torch/csrc/lazy/core/metrics.h", "torch/csrc/lazy/core/shape.h", "lazy_tensor_core/csrc/aten_ltc_bridge.h", "lazy_tensor_core/csrc/lazy_graph_executor.h", f"{output_dir}/{backend_key}NativeFunctions.h", f"{output_dir}/{backend_key}LazyIr.h", f"{output_dir}/{backend_key}ShapeInference.h", ] ], 'native_functions_include': '', 'backend_namespace': 'torch_lazy_tensors', # this is wrong 'native_function_definitions': list( concat_map_codegen(dest.GenLazyNativeFuncDefinition( f'{backend_key}NativeFunctions', backend_indices[ backend_key], tensor_class), grouped_native_functions, codegenInplaceVariant=True)), }) # Generate headers for shape/dtype funcs for non-meta kernels fm.write_with_template( f'{backend_key}ShapeInference.h', 'ShapeInference.h', lambda: { 'lazy_ir_sysinc': [ f'#include <{path}>' for path in [ "ATen/Tensor.h", "c10/core/ScalarType.h", "c10/util/Optional.h", "torch/csrc/lazy/core/ir.h", "torch/csrc/lazy/core/shape.h", "vector", ] ], 'lazy_ir_inc': [], 'DispatchKey': backend_key, 'dispatch_namespace': backend_key.lower(), 'func_declarations': list( concat_map_codegen( dest.GenLazyShapeInferenceDefinition( backend_indices[backend_key], tensor_class), grouped_native_functions)), }) # Generate IR node classes fm.write_with_template( f'{backend_key}LazyIr.h', 'LazyIr.h', lambda: { 'lazy_ir_sysinc': [ f'#include <{path}>' for path in [ "ATen/core/Formatting.h", "c10/core/ScalarType.h", "c10/util/Optional.h", "torch/csrc/lazy/core/hash.h", "torch/csrc/lazy/core/ir.h", "vector", ] ], 'lazy_ir_inc': [ f'#include "{path}"' for path in [node_base_hdr if node_base_hdr is not None else None] if path is not None ], 'external_backend_headers': f'#include "{output_dir}/{backend_key}NativeFunctions.h"', 'namespaced_headers': '', 'DispatchKey': backend_key, 'dispatch_namespace': backend_key.lower(), 'ir_declarations': list( concat_map_codegen( dest.LazyIR(backend_indices[backend_key], node_base), grouped_native_functions)), })
def run_gen_lazy_tensor( aten_path: str, source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str], node_base: str = default_args.node_base, node_base_hdr: Optional[str] = default_args.node_base_hdr, tensor_class: str = default_args.tensor_class, tensor_class_hdr: str = default_args.tensor_class_hdr, shape_inference_hdr: str = default_args.shape_inference_hdr, lazy_ir_cls: Type[LazyIR] = default_args.lazy_ir_cls, # build_in_tree is true for TS backend and affects include paths build_in_tree: bool = False, # per_operator_headers changes whether ATen/Functions.h or individual operator headers are used # it must match how ATen was built per_operator_headers: bool = False, backend_name: str = default_args.backend_name, gen_forced_fallback_code: bool = False) -> None: template_dir = os.path.join(aten_path, "templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run) fm = make_file_manager(output_dir) native_yaml_path = os.path.join(aten_path, 'native/native_functions.yaml') parsed_yaml = parse_native_yaml(native_yaml_path) native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices grouped_native_functions = get_grouped_native_functions(native_functions) def sort_native_function( f: Union[NativeFunctionsGroup, NativeFunction]) -> str: """ We sort the native function because of the note in concat_map_codegen. TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly. """ func = f.functional.func if isinstance( f, NativeFunctionsGroup) else f.func return str(func.name.name) grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function) parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace backend_indices = parsed_backend_yaml.backend_indices full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions) def concat_map_codegen( func: Callable[[NativeFunction], Sequence[str]], xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]], *, codegenInplaceVariant: bool = False) -> Iterator[str]: """ We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we only code-gen additional entries for the inplace variant for the native functions. Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and relu_ which will cause problems for relu. TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack. """ generated = set() def gen_key(func: FunctionSchema) -> Tuple[str, str]: # we want to generate unique entries for overloads of functional variants, # but not for inplace variants unless explicitly told `codegenInplaceVariant` return (func.name.name.base, func.name.overload_name) for x in xs: f = x.functional if isinstance(x, NativeFunctionsGroup) else x # For the 'or'd terms: # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items. # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item. # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item # as if they were the functional variants for one time. if f.func.name in full_codegen and \ (codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated): generated.add(gen_key(f.func)) for r in func(f): yield r selector = SelectiveBuilder.get_nop_selector() assert backend_key is not None class_name = backend_indices[backend_key].native_function_class_name() if impl_path is not None: error_on_missing_kernels(native_functions, backend_indices, backend_key, autograd_key, class_name, impl_path, full_codegen) """ Validate Shape Inference Definitions Generated lazy native functions all perform shape inference, by first using a meta:: kernel if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature, so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides the expected signature which can be copy-pasted into shape_inference.h. compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported to structured kernels. See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information. """ if shape_inference_hdr is not None: expected_shape_infr_decls = list( concat_map_codegen(dest.GenLazyShapeInferenceDefinition( backend_indices[backend_key], tensor_class), grouped_native_functions, codegenInplaceVariant=True)) validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls) assert class_name is not None # Generate nativefunction declarations # Note, eager registrations is set to False for the lazy TS backend as another LTC backend # may want to register their own lazy kernels instead of registering the TS ones. # The registration will lazily happen when init_ts_backend is called. gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key, backend_name) # Generate Dispatcher registrations which hook up the nativefunctions for dispatch_key in [backend_key] if autograd_key is None else [ backend_key, autograd_key ]: gen_dispatcher_registrations(fm, output_dir, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector, build_in_tree=build_in_tree, per_operator_headers=per_operator_headers, backend_name=backend_name, eager_registration=False) # Generate native function impls that build IR nodes ns_helper = NamespaceHelper(cpp_namespace) fm.write_with_template( f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: { 'includes': [ f'#include <{path}>' for path in [ tensor_class_hdr, shape_inference_hdr, "ATen/Functions.h", "ATen/MetaFunctions.h", "ATen/Operators.h", "ATen/native/CPUFallback.h", "torch/csrc/lazy/core/lazy_graph_executor.h", "torch/csrc/lazy/core/metrics.h", "torch/csrc/lazy/core/shape.h", f"{output_dir}/{backend_key}NativeFunctions.h", f"{output_dir}/LazyIr.h", ] + (["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"] if gen_forced_fallback_code else []) ], 'native_functions_include': '', 'namespace_prologue': ns_helper.prologue, 'namespace_epilogue': ns_helper.epilogue, 'native_function_definitions': list( concat_map_codegen(dest.GenLazyNativeFuncDefinition( f'{backend_key}NativeFunctions', backend_indices[ backend_key], tensor_class, gen_forced_fallback_code), grouped_native_functions, codegenInplaceVariant=True)), }) # Generate IR node classes fm.write_with_template( 'LazyIr.h', 'LazyIr.h', lambda: { 'lazy_ir_sysinc': [ f'#include <{path}>' for path in [ "ATen/core/Formatting.h", "c10/core/ScalarType.h", "c10/util/Optional.h", "torch/csrc/lazy/core/hash.h", "torch/csrc/lazy/core/ir.h", "torch/csrc/lazy/core/shape.h", "vector", ] ], 'lazy_ir_inc': [ f'#include "{path}"' for path in [node_base_hdr if node_base_hdr is not None else None] if path is not None ], 'ir_declarations': list( concat_map_codegen( lazy_ir_cls(backend_indices[backend_key], node_base), grouped_native_functions)), 'namespace_prologue': ns_helper.prologue, 'namespace_epilogue': ns_helper.epilogue, })