def verify(self): try: Plant.get(Plant.localhost == True) return True except Exception as e: logger.warning(e) return False
def pull_feeds(url, provider, rss_category): """ Pull feeds for an individual category specific Article :param url: Category based Provider URL link :param provider: Name of the Article Provider :param rss_category: Category of the articles :return: None """ try: # Get provider from the config file items = parse_url(url) if items: # Loop through the items iterator object for item in items: # if no title or description skip the article if not item['title'] and item['description']: continue # Update Metadata result = update_metadata(item, rss_category, provider) # Update Mongo DB update_mongo(result, provider) else: logger.warning( "Unable to pull items for `{}` in `{}` category".format( provider, rss_category)) except Exception as error: logger.error(error)
def dogs_result_df(self): if not hasattr(self, "dogs_df"): res = self._prepare_strategy() if res: logger.warning( f"Dividend Yield and PE_Ratio for {res} not found. Used fallback instead. It " f"is advised to check actual values online.") return self.dogs_df
def alive(self): from models.plant import Plant from models.plant import PlantNetworkStatus from models.plant import PlantNetworkUptime daemon = MeshNetwork() online = PlantNetworkStatus.select().where(PlantNetworkStatus.name == 'online') offline = PlantNetworkStatus.select().where(PlantNetworkStatus.name == 'offline') masters = Plant.select().where(Plant.localhost == False, Plant.role == 'master', Plant.active == True) masters = list(masters) plants = deepcopy(masters) local = Plant.get(localhost=True) slaves = Plant.select().where(Plant.localhost == False, Plant.role == str(local.uuid)) plants.extend(list(slaves)) for plant in plants: daemon.alive(plant, 1) status = self.get(5) online_dataset = None offline_dataset = None options = [[online, online_dataset, [1]], [offline, offline_dataset, [254, 255]]] for i in options: i[1] = None i[1], _ = PlantNetworkUptime.get_or_create(plant=plant, status=i[0], defaults={'overall': 0, 'current': 0}) if status in i[2]: i[1].current += 1 i[1].overall += 1 i[1].save() if plant.role != 'master': data = urllib.parse.urlencode({}).encode('ascii') for master in masters: req = urllib.request.Request('http://{}:2902/update/plant/{}/alive/{}/add'.format(master.ip, str(plant.uuid), i[1].status.name), data) try: with urllib.request.urlopen(req) as response: response.read().decode('utf8') except Exception as e: logger.warning('{} - {}: {}'.format(plant.name, master.name, e)) for dataset in options: if dataset[0] != i[0] and i[1].current != 0: i[1].current = 0 i[1].save()
def configORDERERS(name, path, offset, yamlContent): # name means ordererid # TODO put these methods to a utils. currentDir = os.path.dirname(__file__) clusterName = yamlContent["clusterName"] PORTSTARTFROM = yamlContent["fabricPortStartFrom"] fabricTag = yamlContent["hyperledgerFabricImage"]["fabricTag"] fabricKafkaTag = yamlContent["hyperledgerFabricImage"]["fabricKafkaTag"] consensusType = yamlContent["consensusType"] if consensusType == "kafka": ordererTemplate = "fabric_1_0_template_orderer_kafka.yaml" elif consensusType == "solo": ordererTemplate = "fabric_1_0_template_orderer.yaml" else: ordererTemplate = "fabric_1_0_template_orderer.yaml" logger.warning("WARNING: Unknown orderer type %s. Use solo instead.", ordererYaml["Type"]) configTemplate = getTemplate(ordererTemplate) storedPath = locateDeploymentFile(path) deploymentOfOrderer = storedPath + "/" + name + ".yaml" mspPathTemplate = 'orderers/{}/msp' tlsPathTemplate = 'orderers/{}/tls' proPathTemplate = 'orderers/{}/production' nameSplit = name.split(".", 1) ordererName = nameSplit[0] domainName = nameSplit[1] ordererOrgs = yamlContent["crypto-config.yaml"]["OrdererOrgs"] for ordererOrg in ordererOrgs: if domainName == ordererOrg["Domain"]: namespace = ordererOrg["Name"].lower() + "-" + clusterName.lower() ordererOffset = offset exposedPort = PORTSTARTFROM + 2000 + ordererOffset notifyDFgeneration(deploymentOfOrderer, configTemplate) render(configTemplate, deploymentOfOrderer, namespace=namespace, ordererID=ordererName, podName=ordererName + "-" + namespace, localMSPID="OrdererMSP", mspPath=mspPathTemplate.format(name), tlsPath=tlsPathTemplate.format(name), proPath=proPathTemplate.format(name), nodePort=exposedPort, pvcName=namespace + "-pvc", fabricTag=fabricTag, fabricKafkaTag=fabricKafkaTag)
def fetch(): json_data_client = client_info.CLIENTS if not json_data_client: logger.warning( "RSS client info is empty. Check the client_info.py file") sys.exit(1) try: # Loop through the clients and individual category RSS site link for client in json_data_client: base_url = json_data_client[client]["base_url"] for category in json_data_client[client]["endpoints"]: url = base_url + json_data_client[client]["endpoints"][category] pull_feeds(url, client, category) except Exception as error: logger.error(error)
def _ProcessFileOrDirectory(self, path_spec, parent_id): current_display_name = path_helper.PathHelper.GetDisplayNameForPathSpec( path_spec) #print(current_display_name) file_entry = dfvfs_resolver.Resolver.OpenFileEntry(path_spec) current_id = file_entry._tsk_file.info.meta.addr if file_entry is None: logger.warning( 'Unable to open file entry with path spec: {0:s}'.format( current_display_name)) return if file_entry.IsDirectory(): for sub_file_entry in file_entry.sub_file_entries: try: if not sub_file_entry.IsAllocated(): continue except dfvfs_errors.BackEndError as exception: logger.warning( 'Unable to process file: {0:s} with error: {1!s}'. format( sub_file_entry.path_spec.comparable.replace( '\n', ';'), exception)) continue if sub_file_entry.type_indicator == dfvfs_definitions.TYPE_INDICATOR_TSK: if file_entry.IsRoot( ) and sub_file_entry.name == '$OrphanFiles': continue self._ProcessFileOrDirectory(sub_file_entry.path_spec, current_id) self._InsertFileInfo(file_entry, parent_id=parent_id) file_entry = None
def main(): parser = argparse.ArgumentParser() parser.add_argument("--arch", default='albert', type=str) parser.add_argument('--task_name', default='lcqmc', type=str) parser.add_argument("--train_max_seq_len", default=60, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--eval_max_seq_len", default=60, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=16, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.1, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=int, help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() args.model_save_path = config['checkpoint_dir'] / f'{args.arch}' args.model_save_path.mkdir(exist_ok=True) # Setudistant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device init_logger(log_file=config['log_dir'] / 'finetuning.log') logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # --------- data processor = BertProcessor(vocab_path=config['bert_dir'] / 'vocab.txt', do_lower_case=args.do_lower_case) label_list = processor.get_labels() num_labels = len(label_list) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab bert_config = BertConfig.from_json_file(str(config['bert_dir'] / 'bert_config.json')) bert_config.share_parameter_across_layers = True bert_config.num_labels = num_labels logger.info("Training/evaluation parameters %s", args) metrics = Accuracy(topK=1) # Training if args.do_train: train_data = processor.get_train(config['data_dir'] / "train.txt") train_examples = processor.create_examples(lines=train_data, example_type='train', cached_examples_file=config[ 'data_dir'] / f"cached_train_examples_{args.arch}") train_features = processor.create_features(examples=train_examples, max_seq_len=args.train_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_train_features_{}_{}".format( args.train_max_seq_len, args.arch )) train_dataset = processor.create_dataset(train_features) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) valid_data = processor.get_dev(config['data_dir'] / "dev.txt") valid_examples = processor.create_examples(lines=valid_data, example_type='valid', cached_examples_file=config[ 'data_dir'] / f"cached_valid_examples_{args.arch}") valid_features = processor.create_features(examples=valid_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_valid_features_{}_{}".format( args.eval_max_seq_len, args.arch )) valid_dataset = processor.create_dataset(valid_features) valid_sampler = SequentialSampler(valid_dataset) valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size) model = BertForSequenceClassification.from_pretrained(config['bert_dir'], config=bert_config) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) train(args, train_dataloader, valid_dataloader, metrics, model) if args.do_test: test_data = processor.get_train(config['data_dir'] / "test.txt") test_examples = processor.create_examples(lines=test_data, example_type='test', cached_examples_file=config[ 'data_dir'] / f"cached_test_examples_{args.arch}") test_features = processor.create_features(examples=test_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_test_features_{}_{}".format( args.eval_max_seq_len, args.arch )) test_dataset = processor.create_dataset(test_features) test_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size) model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config) model.to(args.device) test_log = evaluate(args, model, test_dataloader, metrics) print(test_log)
raise SDKException( "The SDK expected sysroot doesn't exist: {}".format(sysroot)) logger.info("SDK installed successfully") def get_sdk_sysroot(sdk, sdk_name): if not sdk: raise Exception("SDK {} not found".format(sdk_name)) if "sysroot" not in sdk: raise Exception( "SDK {} doesn't have a sysroot defined".format(sdk_name)) return os.path.join(get_sdk_dir(sdk_name), sdk["sysroot"]) def set_default_sdk(sdk_name): sdk_name = unalias_name(sdk_name) sdk = get_sdk(sdk_name) if not is_sdk_installed(sdk_name): raise SDKNotInstalled("The SDK {} is not installed".format(sdk_name)) WASI_SDK = get_sdk(CURRENT_SDK) WASI_SDK_DIR = get_sdk_sysroot(WASI_SDK, CURRENT_SDK) if __name__ == '__main__': try: sys.exit(download_and_unpack(CURRENT_SDK)) except KeyboardInterrupt: logger.warning("KeyboardInterrupt") sys.exit(1)
def error(bot, update, error): """Log Errors caused by Updates.""" bot.send_message(chat_id=update.message.chat_id, text="Произошла какая-то ошибка. Попробуй еще раз.") logger.warning('Update "%s" caused error "%s"', update, error)