class ClsRunningScore(object): def __init__(self, configer): self.configer = configer self.top1_acc = DictAverageMeter() self.top3_acc = DictAverageMeter() self.top5_acc = DictAverageMeter() def get_top1_acc(self): return self.top1_acc.avg def get_top3_acc(self): return self.top3_acc.avg def get_top5_acc(self): return self.top5_acc.avg def update(self, out_dict, label_dict): """Computes the precision@k for the specified values of k""" top1_acc_dict = dict() top3_acc_dict = dict() top5_acc_dict = dict() batch_size_dict = dict() for key in label_dict.keys(): output, target = out_dict[key], label_dict[key] topk = (1, 3, 5) maxk = min(max(topk), output.size(1)) batch_size_dict[key] = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=False) res.append(correct_k / batch_size_dict[key]) top1_acc_dict[key] = res[0].item() top3_acc_dict[key] = res[1].item() top5_acc_dict[key] = res[2].item() self.top1_acc.update(top1_acc_dict, batch_size_dict) self.top3_acc.update(top3_acc_dict, batch_size_dict) self.top5_acc.update(top5_acc_dict, batch_size_dict) def reset(self): self.top1_acc.reset() self.top3_acc.reset() self.top5_acc.reset()
class PoseEstimator(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.get_pose_model() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver')) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.pose_loss = self.pose_model_manager.get_pose_loss() def _get_parameters(self): lr_1 = [] lr_2 = [] params_dict = dict(self.pose_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: lr_2.append(value) else: lr_1.append(value) params = [{'params': lr_1, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0}, {'params': lr_2, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0},] return params def train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.runner_state['epoch'] += 1 for i, data_dict in enumerate(self.train_loader): Trainer.update(self, warm_list=(0,), solver_dict=self.configer.get('solver')) self.data_time.update(time.time() - start_time) # Forward pass. out = self.pose_net(data_dict) # Compute the loss of the train batch & backward. loss_dict = self.pose_loss(out) loss = loss_dict['loss'] self.train_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get('solver', 'display_iter') == 0: Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {4}\tLoss = {3}\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), self.train_losses.info(), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0: self.val() def val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for i, data_dict in enumerate(self.val_loader): # Forward pass. out = self.pose_net(data_dict) # Compute the loss of the val batch. loss_dict = self.pose_loss(out) self.val_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['val_loss'] = self.val_losses.avg['loss'] RunnerHelper.save_net(self, self.pose_net, val_loss=self.val_losses.avg['loss']) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train()
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.get_seg_model() self.seg_net = RunnerHelper.load_net(self, self.seg_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.loss = self.seg_model_manager.get_seg_loss() def _get_parameters(self): wd_0 = [] lr_1 = [] lr_10 = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: if value.__dict__.get('wd', -1) == 0: wd_0.append(value) print(key) else: lr_10.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('solver', 'lr')['base_lr'] }, { 'params': wd_0, 'lr': self.configer.get('solver', 'lr')['base_lr'] * 1.0, 'weight_decay': 0.0 }, { 'params': lr_10, 'lr': self.configer.get('solver', 'lr')['base_lr'] * 1.0 }] return params def train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() torch.cuda.empty_cache() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, warm_list=(0, ), solver_dict=self.configer.get('solver')) self.data_time.update(time.time() - start_time) # Forward pass. data_dict = RunnerHelper.to_device(self, data_dict) out = self.seg_net(data_dict) # Compute the loss of the train batch & backward. loss_dict = self.loss(out) loss = loss_dict['loss'] self.train_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {4}\tLoss = {3}\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), self.train_losses.info(), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.runner_state['iters'] % self.configer.get('solver.save_iters') == 0 \ and self.configer.get('local_rank') == 0: RunnerHelper.save_net(self, self.seg_net, iters=self.runner_state['iters']) if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0 \ and not self.configer.get('network.distributed'): self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): data_dict = RunnerHelper.to_device(self, data_dict) with torch.no_grad(): # Forward pass. out = self.seg_net(data_dict) loss_dict = self.loss(out) # Compute the loss of the val batch. out_dict, _ = RunnerHelper.gather(self, out) self.val_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self._update_running_score(out_dict['out'], DCHelper.tolist(data_dict['meta'])) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['performance'] = self.seg_running_score.get_mean_iou( ) self.runner_state['val_loss'] = self.val_losses.avg['loss'] RunnerHelper.save_net( self, self.seg_net, performance=self.seg_running_score.get_mean_iou(), val_loss=self.val_losses.avg['loss']) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss = {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) Log.info('Pixel ACC: {}\n'.format( self.seg_running_score.get_pixel_acc())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def _update_running_score(self, pred, metas): pred = pred.permute(0, 2, 3, 1) for i in range(pred.size(0)): border_size = metas[i]['border_wh'] ori_target = metas[i]['ori_target'] total_logits = cv2.resize( pred[i, :border_size[1], :border_size[0]].cpu().numpy(), tuple(metas[i]['ori_img_wh']), interpolation=cv2.INTER_CUBIC) labelmap = np.argmax(total_logits, axis=-1) self.seg_running_score.update(labelmap[None], ori_target[None])
class ImageClassifier(object): """ The class for the training phase of Image classification. """ def __init__(self, configer): self.configer = configer self.runner_state = dict() self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.cls_model_manager = ModelManager(configer) self.cls_data_loader = DataLoader(configer) self.running_score = ClsRunningScore(configer) self.cls_net = self.cls_model_manager.get_cls_model() self.solver_dict = self.configer.get('solver') self.cls_net = RunnerHelper.load_net(self, self.cls_net) self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.solver_dict) self.train_loader = self.cls_data_loader.get_trainloader() self.val_loader = self.cls_data_loader.get_valloader() self.loss = self.cls_model_manager.get_cls_loss() def _init_model(self): self.cls_net = self.cls_model_manager.get_cls_model() self.cls_net = RunnerHelper.load_net(self, self.cls_net) self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver')) self.train_loader = self.cls_data_loader.get_trainloader() self.val_loader = self.cls_data_loader.get_valloader() self.ce_loss = self.cls_model_manager.get_cls_loss() def _get_parameters(self): if self.solver_dict.get('optim.wdall', default=True): lr_1 = [] lr_2 = [] params_dict = dict(self.cls_net.named_parameters()) for key, value in params_dict.items(): if value.requires_grad: if 'backbone' in key: if self.configer.get('solver.lr.bb_lr_scale') == 0.0: value.requires_grad = False else: lr_1.append(value) else: lr_2.append(value) params = [ {'params': lr_1, 'lr': self.solver_dict['lr']['base_lr'] * self.configer.get('solver.lr.bb_lr_scale')}, {'params': lr_2, 'lr': self.solver_dict['lr']['base_lr']}] else: no_decay_list = [] decay_list = [] no_decay_name = [] decay_name = [] for m in self.cls_net.modules(): if (hasattr(m, 'groups') and m.groups > 1) or isinstance(m, torch.nn.BatchNorm2d) \ or m.__class__.__name__ == 'GL': no_decay_list += m.parameters(recurse=False) for name, p in m.named_parameters(recurse=False): no_decay_name.append(m.__class__.__name__ + name) else: for name, p in m.named_parameters(recurse=False): if 'bias' in name: no_decay_list.append(p) no_decay_name.append(m.__class__.__name__ + name) else: decay_list.append(p) decay_name.append(m.__class__.__name__ + name) Log.info('no decay list = {}'.format(no_decay_name)) Log.info('decay list = {}'.format(decay_name)) params = [{'params': no_decay_list, 'weight_decay': 0}, {'params': decay_list}] return params def train(self): """ Train function of every epoch during train phase. """ self.cls_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.runner_state['epoch'] += 1 for i, data_dict in enumerate(self.train_loader): Trainer.update(self, warm_list=(0, 1), warm_lr_list=(self.solver_dict['lr']['base_lr']*self.configer.get('solver.lr.bb_lr_scale'), self.solver_dict['lr']['base_lr']), solver_dict=self.solver_dict) self.data_time.update(time.time() - start_time) data_dict = RunnerHelper.to_device(self, data_dict) # Forward pass. out = self.cls_net(data_dict) loss_dict = self.loss(out) # Compute the loss of the train batch & backward. loss = loss_dict['loss'] self.train_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self.optimizer.zero_grad() loss.backward() if self.configer.get('network', 'clip_grad', default=False): RunnerHelper.clip_grad(self.cls_net, 10.) self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.solver_dict['display_iter'] == 0: Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {4}\tLoss = {3}\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.solver_dict['display_iter'], self.train_losses.info(), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.solver_dict['lr']['metric'] == 'iters' and self.runner_state['iters'] == self.solver_dict['max_iters']: break if self.runner_state['iters'] % self.solver_dict['save_iters'] == 0 and self.configer.get('local_rank') == 0: RunnerHelper.save_net(self, self.cls_net) # Check to val the current model. if self.runner_state['iters'] % self.solver_dict['test_interval'] == 0: self.val() def val(self): """ Validation function during the train phase. """ self.cls_net.eval() start_time = time.time() with torch.no_grad(): for j, data_dict in enumerate(self.val_loader): # Forward pass. data_dict = RunnerHelper.to_device(self, data_dict) out = self.cls_net(data_dict) loss_dict = self.loss(out) out_dict, label_dict, _ = RunnerHelper.gather(self, out) self.running_score.update(out_dict, label_dict) self.val_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.cls_net) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s'.format(batch_time=self.batch_time)) Log.info('TestLoss = {}'.format(self.val_losses.info())) Log.info('Top1 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top1_acc()))) Log.info('Top3 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top3_acc()))) Log.info('Top5 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top5_acc()))) self.batch_time.reset() self.batch_time.reset() self.val_losses.reset() self.running_score.reset() self.cls_net.train()