def main(_): pp.pprint(flags.FLAGS.__flags) if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.sample_dir): os.makedirs(FLAGS.sample_dir) with tf.Session() as sess: cdgan = CrossDomainGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, c_dim=FLAGS.c_dim, dataset_name=FLAGS.dataset, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir) if FLAGS.is_train: cdgan.train(FLAGS) else: cdgan.load(FLAGS.checkpoint_dir) if FLAGS.visualize: # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0], # [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1], # [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2], # [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3], # [dcgan.h4_w, dcgan.h4_b, None]) # Below is codes for visualization OPTION = 2 visualize(sess, dcgan, FLAGS, OPTION)
def main(_): pp.pprint(flags.FLAGS.__flags) if FLAGS.input_width is None: FLAGS.input_width = FLAGS.input_height if FLAGS.output_width is None: FLAGS.output_width = FLAGS.output_height if not os.path.exists(LOGDIR): os.makedirs(LOGDIR) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) run_config = tf.ConfigProto() run_config.gpu_options.allow_growth=True print("FLAGs " + str(FLAGS.dataset)) with tf.Session(config=run_config) as sess: model = BlockGAN( sess, input_width=FLAGS.input_width, input_height=FLAGS.input_height, output_width=FLAGS.output_width, output_height=FLAGS.output_height, dataset_name=FLAGS.dataset, input_fname_pattern=FLAGS.input_fname_pattern) model.build(cfg['build_func']) show_all_variables() if FLAGS.train: train_func = eval("model." + (cfg['train_func'])) train_func(FLAGS) else: if not model.load(LOGDIR)[0]: raise Exception("[!] Train a model first, then run test mode") model.sample_HoloGAN(FLAGS)
def main(_): pp.pprint(flags.FLAGS.__flags) if not os.path.exists(FLAGS.checkpoint_dir): os.makedirs(FLAGS.checkpoint_dir) with tf.Session() as sess: model = TinyVGG(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, c_dim=FLAGS.c_dim, y_dim=FLAGS.y_dim, dataset_name=FLAGS.dataset, checkpoint_dir=FLAGS.checkpoint_dir) if FLAGS.is_train: model.train(FLAGS) else: model.load(FLAGS.checkpoint_dir)
def main(_): os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' pp.pprint(flags.FLAGS.__flags) if FLAGS.input_width is None: FLAGS.input_width = FLAGS.input_height if FLAGS.output_width is None: FLAGS.output_width = FLAGS.output_height if not os.path.exists(LOGDIR): os.makedirs(LOGDIR) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) run_config = tf.ConfigProto() run_config.gpu_options.allow_growth=True print("FLAGs " + str(FLAGS.dataset)) with tf.Session(config=run_config) as sess: model = HoloGAN( sess, input_width=FLAGS.input_width, input_height=FLAGS.input_height, output_width=FLAGS.output_width, output_height=FLAGS.output_height, dataset_name=FLAGS.dataset, input_fname_pattern=FLAGS.input_fname_pattern, crop=FLAGS.crop) model.build(cfg['build_func']) show_all_variables() if FLAGS.train: print("FLAGS.train: ", FLAGS.train) print("FLAGS.rotate_azimuth: ", FLAGS.rotate_azimuth) train_func = eval("model." + (cfg['train_func'])) train_func(FLAGS) else: print("FLAGS.train: ", FLAGS.train) print("FLAGS.rotate_azimuth: ", FLAGS.rotate_azimuth) if not model.load(LOGDIR)[0]: raise Exception("[!] Train a model first, then run test mode") # here are eight ways to sample images for different purposes #model.sample_HoloGAN(FLAGS) #model.sample_HoloGAN_target_image_tuple(FLAGS) #model.sample_HoloGAN_target_image_divided(FLAGS) #model.sample_HoloGAN_target_image_update_tuple(FLAGS) #model.sample_HoloGAN_target_image_update_divided(FLAGS) #model.sample_HoloGAN_many(FLAGS, amount=10000) #model.sample_HoloGAN_many_target_image(FLAGS, amount=10000) model.sample_HoloGAN_many_target_image_update(FLAGS, start_idx=9000, over_idx=10000, update_num=3)