예제 #1
0
    def detect_onet(self, im, dets):
        """Get face candidates using onet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of rnet

        Returns:
        -------
        boxes_align: numpy array
            boxes after calibration
        landmarks_align: numpy array
            landmarks after calibration

        """
        h, w, c = im.shape
        if dets is None:
            return None, None

        dets = utils.convert_to_square(dets)
        dets[:, 0:4] = np.round(dets[:, 0:4])

        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]

        cropped_ims_tensors = []
        for i in range(num_boxes):
            try:
                if tmph[i] > 0 and tmpw[i] > 0:
                    tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
                    tmp[dy[i]:edy[i], dx[i]:edx[i], :] = im[y[i]:ey[i], x[i]:ex[i], :]
                    crop_im = cv2.resize(tmp, (48, 48))
                    crop_im_tensor = convert_image_to_tensor(crop_im)
                    cropped_ims_tensors.append(crop_im_tensor)
            except ValueError as e:
                print(e)

        feed_imgs = torch.stack(cropped_ims_tensors)

        feed_imgs = feed_imgs.to(self.device)

        cls_map, reg, landmark = self.onet_detector(feed_imgs)

        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()
        landmark = landmark.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[2])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]
            landmark = landmark[keep_inds]
        else:
            return None, None

        keep = utils.nms(boxes, 0.7, mode="Minimum")

        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]
        keep_landmark = landmark[keep]

        bw = keep_boxes[:, 2] - keep_boxes[:, 0]
        bh = keep_boxes[:, 3] - keep_boxes[:, 1]

        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        align_landmark_topx = keep_boxes[:, 0]
        align_landmark_topy = keep_boxes[:, 1]

        boxes_align = np.vstack([align_topx,
                                 align_topy,
                                 align_bottomx,
                                 align_bottomy,
                                 keep_cls[:, 0]
                                 ])

        boxes_align = boxes_align.T

        landmark = np.vstack([
            align_landmark_topx + keep_landmark[:, 0] * bw,
            align_landmark_topy + keep_landmark[:, 1] * bh,
            align_landmark_topx + keep_landmark[:, 2] * bw,
            align_landmark_topy + keep_landmark[:, 3] * bh,
            align_landmark_topx + keep_landmark[:, 4] * bw,
            align_landmark_topy + keep_landmark[:, 5] * bh,
            align_landmark_topx + keep_landmark[:, 6] * bw,
            align_landmark_topy + keep_landmark[:, 7] * bh,
            align_landmark_topx + keep_landmark[:, 8] * bw,
            align_landmark_topy + keep_landmark[:, 9] * bh,
        ])

        landmark_align = landmark.T

        return boxes_align, landmark_align
예제 #2
0
    def detect_rnet(self, im, dets):
        """Get face candidates using rnet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of pnet

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """
        h, w, c = im.shape
        if dets is None:
            return None, None

        dets = utils.convert_to_square(dets)
        dets[:, 0:4] = np.round(dets[:, 0:4])

        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]

        cropped_ims_tensors = []
        for i in range(num_boxes):
            try:
                if tmph[i] > 0 and tmpw[i] > 0:
                    tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
                    tmp[dy[i]:edy[i], dx[i]:edx[i], :] = im[y[i]:ey[i], x[i]:ex[i], :]
                    crop_im = cv2.resize(tmp, (24, 24))
                    crop_im_tensor = convert_image_to_tensor(crop_im)
                    # cropped_ims_tensors[i, :, :, :] = crop_im_tensor
                    cropped_ims_tensors.append(crop_im_tensor)
            except ValueError as e:
                print('dy: {}, edy: {}, dx: {}, edx: {}'.format(dy[i], edy[i], dx[i], edx[i]))
                print('y: {}, ey: {}, x: {}, ex: {}'.format(y[i], ey[i], x[i], ex[i]))
                print(e)

        feed_imgs = torch.stack(cropped_ims_tensors)

        feed_imgs = feed_imgs.to(self.device)

        cls_map, reg = self.rnet_detector(feed_imgs)
        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[1])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]
        else:
            return None, None

        keep = utils.nms(boxes, 0.7)
        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]
        bw = keep_boxes[:, 2] - keep_boxes[:, 0]
        bh = keep_boxes[:, 3] - keep_boxes[:, 1]
        boxes = np.vstack([keep_boxes[:, 0],
                           keep_boxes[:, 1],
                           keep_boxes[:, 2],
                           keep_boxes[:, 3],
                           keep_cls[:, 0]
                           ])
        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        boxes_align = np.vstack([align_topx,
                                 align_topy,
                                 align_bottomx,
                                 align_bottomy,
                                 keep_cls[:, 0]
                                 ])
        boxes = boxes.T
        boxes_align = boxes_align.T

        return boxes, boxes_align
예제 #3
0
    def detect_pnet(self, im):
        """Get face candidates through pnet

        Parameters:
        ----------
        im: numpy array, input image array

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """
        h, w, c = im.shape
        net_size = 12
        current_scale = float(net_size) / \
                        self.min_face_size  # find initial scale
        im_resized = self.resize_image(im, current_scale)
        current_height, current_width, _ = im_resized.shape

        # fcn for pnet
        all_boxes = list()
        while min(current_height, current_width) > net_size:
            image_tensor = convert_image_to_tensor(im_resized)
            feed_imgs = image_tensor.unsqueeze(0)

            feed_imgs = feed_imgs.to(self.device)

            cls_map, reg = self.pnet_detector(feed_imgs)
            cls_map_np = convert_chwTensor_to_hwcNumpy(cls_map.cpu())
            reg_np = convert_chwTensor_to_hwcNumpy(reg.cpu())

            boxes = self.generate_bounding_box(
                cls_map_np[0, :, :], reg_np, current_scale, self.thresh[0])

            current_scale *= self.scale_factor
            im_resized = self.resize_image(im, current_scale)
            current_height, current_width, _ = im_resized.shape

            if boxes.size == 0:
                continue
            keep = utils.nms(boxes[:, :5], 0.5, 'Union')
            boxes = boxes[keep]
            all_boxes.append(boxes)

        if len(all_boxes) == 0:
            return None, None

        all_boxes = np.vstack(all_boxes)

        # merge the detection from first stage
        keep = utils.nms(all_boxes[:, 0:5], 0.7, 'Union')
        all_boxes = all_boxes[keep]

        bw = all_boxes[:, 2] - all_boxes[:, 0]
        bh = all_boxes[:, 3] - all_boxes[:, 1]

        boxes = np.vstack([all_boxes[:, 0],
                           all_boxes[:, 1],
                           all_boxes[:, 2],
                           all_boxes[:, 3],
                           all_boxes[:, 4]
                           ])

        boxes = boxes.T

        align_topx = all_boxes[:, 0] + all_boxes[:, 5] * bw
        align_topy = all_boxes[:, 1] + all_boxes[:, 6] * bh
        align_bottomx = all_boxes[:, 2] + all_boxes[:, 7] * bw
        align_bottomy = all_boxes[:, 3] + all_boxes[:, 8] * bh

        # refine the boxes
        boxes_align = np.vstack([align_topx,
                                 align_topy,
                                 align_bottomx,
                                 align_bottomy,
                                 all_boxes[:, 4]
                                 ])
        boxes_align = boxes_align.T

        return boxes, boxes_align
예제 #4
0
    def detect_onet(self, im, dets):
        """Get face candidates using onet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of rnet

        Returns:
        -------
        boxes_align: numpy array
            boxes after calibration
        landmarks_align: numpy array
            landmarks after calibration

        """
        h, w, c = im.shape

        if dets is None:
            return None, None
        if dets.shape[0] == 0:
            return None, None

        detss = dets
        dets = self.square_bbox(dets)

        dets[:, 0:4] = np.round(dets[:, 0:4])

        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]

        # cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
        cropped_ims_tensors = []
        for i in range(num_boxes):
            try:
                tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
                # crop input image
                tmp[dy[i]:edy[i] + 1,
                    dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1,
                                              x[i]:ex[i] + 1, :]
            except:
                print(dy[i], edy[i], dx[i], edx[i], y[i], ey[i], x[i], ex[i],
                      tmpw[i], tmph[i])
                print(dets[i])
                print(detss[i])
                print(h, w)
            crop_im = cv2.resize(tmp, (48, 48))
            crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
            # cropped_ims_tensors[i, :, :, :] = crop_im_tensor
            cropped_ims_tensors.append(crop_im_tensor)
        feed_imgs = Variable(torch.stack(cropped_ims_tensors))

        if self.rnet_detector.use_cuda:
            feed_imgs = feed_imgs.cuda()

        cls_map, reg = self.onet_detector(feed_imgs)

        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[2])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]

        else:
            return None, None

        keep = utils.nms(boxes, 0.7, mode="Minimum")

        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]

        bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
        bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1

        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            keep_cls[:, 0],
        ])

        boxes_align = boxes_align.T

        return boxes_align
예제 #5
0
    def detect_rnet(self, im, dets):
        """Get face candidates using rnet

        Parameters:
        ----------
        im: numpy array
            input image array
        dets: numpy array
            detection results of pnet

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """
        # im: an input image
        h, w, c = im.shape

        if dets is None:
            return None, None
        if dets.shape[0] == 0:
            return None, None

        # (705, 5) = [x1, y1, x2, y2, score, reg]
        # print("pnet detection {0}".format(dets.shape))
        # time.sleep(5)
        detss = dets
        # return square boxes
        dets = self.square_bbox(dets)
        detsss = dets
        # rounds
        dets[:, 0:4] = np.round(dets[:, 0:4])
        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(dets, w, h)
        num_boxes = dets.shape[0]

        # cropped_ims_tensors = np.zeros((num_boxes, 3, 24, 24), dtype=np.float32)
        cropped_ims_tensors = []
        for i in range(num_boxes):
            try:
                tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
                tmp[dy[i]:edy[i] + 1,
                    dx[i]:edx[i] + 1, :] = im[y[i]:ey[i] + 1,
                                              x[i]:ex[i] + 1, :]
            except:
                print(dy[i], edy[i], dx[i], edx[i], y[i], ey[i], x[i], ex[i],
                      tmpw[i], tmph[i])
                print(dets[i])
                print(detss[i])
                print(detsss[i])
                print(h, w)
                exit()
            crop_im = cv2.resize(tmp, (24, 24))
            crop_im_tensor = image_tools.convert_image_to_tensor(crop_im)
            # cropped_ims_tensors[i, :, :, :] = crop_im_tensor
            cropped_ims_tensors.append(crop_im_tensor)
        feed_imgs = Variable(torch.stack(cropped_ims_tensors))

        if self.rnet_detector.use_cuda:
            feed_imgs = feed_imgs.cuda()

        cls_map, reg = self.rnet_detector(feed_imgs)

        cls_map = cls_map.cpu().data.numpy()
        reg = reg.cpu().data.numpy()

        keep_inds = np.where(cls_map > self.thresh[1])[0]

        if len(keep_inds) > 0:
            boxes = dets[keep_inds]
            cls = cls_map[keep_inds]
            reg = reg[keep_inds]

        else:
            return None, None
        keep = utils.nms(boxes, 0.7)

        if len(keep) == 0:
            return None, None

        keep_cls = cls[keep]
        keep_boxes = boxes[keep]
        keep_reg = reg[keep]

        bw = keep_boxes[:, 2] - keep_boxes[:, 0] + 1
        bh = keep_boxes[:, 3] - keep_boxes[:, 1] + 1

        boxes = np.vstack([
            keep_boxes[:, 0],
            keep_boxes[:, 1],
            keep_boxes[:, 2],
            keep_boxes[:, 3],
            keep_cls[:, 0],
        ])

        align_topx = keep_boxes[:, 0] + keep_reg[:, 0] * bw
        align_topy = keep_boxes[:, 1] + keep_reg[:, 1] * bh
        align_bottomx = keep_boxes[:, 2] + keep_reg[:, 2] * bw
        align_bottomy = keep_boxes[:, 3] + keep_reg[:, 3] * bh

        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            keep_cls[:, 0],
        ])

        boxes = boxes.T
        boxes_align = boxes_align.T

        # remove invalid box
        valindex = [True for _ in range(boxes_align.shape[0])]
        for i in range(boxes_align.shape[0]):
            if boxes_align[i][2] - boxes_align[i][0] <= 3 or boxes_align[i][
                    3] - boxes_align[i][1] <= 3:
                valindex[i] = False
                print('rnet has one smaller than 3')
            else:
                if boxes_align[i][2] < 1 or boxes_align[i][
                        0] > w - 2 or boxes_align[i][3] < 1 or boxes_align[i][
                            1] > h - 2:
                    valindex[i] = False
                    print('rnet has one out')
        boxes_align = boxes_align[valindex, :]
        boxes = boxes[valindex, :]

        return boxes, boxes_align
예제 #6
0
    def detect_pnet(self, im):
        """Get face candidates through pnet

        Parameters:
        ----------
        im: numpy array
            input image array
            one batch

        Returns:
        -------
        boxes: numpy array
            detected boxes before calibration
        boxes_align: numpy array
            boxes after calibration
        """

        # im = self.unique_image_format(im)

        # original wider face data
        h, w, c = im.shape
        net_size = 12

        current_scale = float(
            net_size) / self.min_face_size  # find initial scale
        # print('imgshape:{0}, current_scale:{1}'.format(im.shape, current_scale))
        im_resized = self.resize_image(im, current_scale)  # scale = 1.0
        current_height, current_width, _ = im_resized.shape
        # fcn
        all_boxes = list()
        while min(current_height, current_width) > net_size:
            # print('current:',current_height, current_width)
            feed_imgs = []
            image_tensor = image_tools.convert_image_to_tensor(im_resized)
            feed_imgs.append(image_tensor)
            feed_imgs = torch.stack(feed_imgs)

            feed_imgs = Variable(feed_imgs)

            if self.pnet_detector.use_cuda:
                feed_imgs = feed_imgs.cuda()

            # self.pnet_detector is a trained pnet torch model

            # receptive field is 12×12
            # 12×12 --> score
            # 12×12 --> bounding box
            cls_map, reg = self.pnet_detector(feed_imgs)

            cls_map_np = image_tools.convert_chwTensor_to_hwcNumpy(
                cls_map.cpu())
            reg_np = image_tools.convert_chwTensor_to_hwcNumpy(reg.cpu())
            # print(cls_map_np.shape, reg_np.shape) # cls_map_np = (1, n, m, 1) reg_np.shape = (1, n, m 4)
            # time.sleep(5)
            # landmark_np = image_tools.convert_chwTensor_to_hwcNumpy(landmark.cpu())

            # self.threshold[0] = 0.6
            # print(cls_map_np[0,:,:].shape)
            # time.sleep(4)

            # boxes = [x1, y1, x2, y2, score, reg]
            boxes = self.generate_bounding_box(cls_map_np[0, :, :], reg_np,
                                               current_scale, self.thresh[0])
            # cv2.rectangle(im,(300,100),(400,200),color=(0,0,0))
            # cv2.rectangle(im,(400,200),(500,300),color=(0,0,0))

            # generate pyramid images
            current_scale *= self.scale_factor  # self.scale_factor = 0.709
            im_resized = self.resize_image(im, current_scale)
            current_height, current_width, _ = im_resized.shape

            if boxes.size == 0:
                continue

            # non-maximum suppresion
            keep = utils.nms(boxes[:, :5], 0.5, 'Union')
            boxes = boxes[keep]
            all_boxes.append(boxes)

        if len(all_boxes) == 0:
            return None, None
        all_boxes = np.vstack(all_boxes)
        # print("shape of all boxes {0}".format(all_boxes.shape))
        # time.sleep(5)

        # merge the detection from first stage
        keep = utils.nms(all_boxes[:, 0:5], 0.7, 'Union')
        all_boxes = all_boxes[keep]
        # boxes = all_boxes[:, :5]

        # x2 - x1
        # y2 - y1
        bw = all_boxes[:, 2] - all_boxes[:, 0] + 1
        bh = all_boxes[:, 3] - all_boxes[:, 1] + 1

        boxes = np.vstack([
            all_boxes[:, 0],
            all_boxes[:, 1],
            all_boxes[:, 2],
            all_boxes[:, 3],
            all_boxes[:, 4],
        ])

        boxes = boxes.T

        # boxes = boxes = [x1, y1, x2, y2, score, reg] reg= [px1, py1, px2, py2] (in prediction)
        align_topx = all_boxes[:, 0] + all_boxes[:, 5] * bw
        align_topy = all_boxes[:, 1] + all_boxes[:, 6] * bh
        align_bottomx = all_boxes[:, 2] + all_boxes[:, 7] * bw
        align_bottomy = all_boxes[:, 3] + all_boxes[:, 8] * bh

        # refine the boxes
        boxes_align = np.vstack([
            align_topx,
            align_topy,
            align_bottomx,
            align_bottomy,
            all_boxes[:, 4],
        ])
        boxes_align = boxes_align.T

        # remove invalid box
        valindex = [True for _ in range(boxes_align.shape[0])]
        for i in range(boxes_align.shape[0]):
            if boxes_align[i][2] - boxes_align[i][0] <= 3 or boxes_align[i][
                    3] - boxes_align[i][1] <= 3:
                valindex[i] = False
                print('pnet has one smaller than 3')
            else:
                if boxes_align[i][2] < 1 or boxes_align[i][
                        0] > w - 2 or boxes_align[i][3] < 1 or boxes_align[i][
                            1] > h - 2:
                    valindex[i] = False
                    print('pnet has one out')
        boxes_align = boxes_align[valindex, :]
        boxes = boxes[valindex, :]
        return boxes, boxes_align