예제 #1
0
 def get_train_iterator(
     self,
     epoch,
     combine=True,
     load_dataset=True,
     data_selector=None,
     shard_batch_itr=True,
 ):
     """Return an EpochBatchIterator over the training set for a given epoch."""
     if load_dataset:
         logger.info("loading train data for epoch {}".format(epoch))
         self.task.load_dataset(
             self.args.train_subset,
             epoch=epoch,
             combine=combine,
             data_selector=data_selector,
         )
     return self.task.get_batch_iterator(
         dataset=self.task.dataset(self.args.train_subset),
         max_tokens=self.args.max_tokens,
         max_sentences=self.args.max_sentences,
         max_positions=utils.resolve_max_positions(
             self.task.max_positions(),
             self.model.max_positions(),
             self.args.max_tokens,
         ),
         ignore_invalid_inputs=True,
         required_batch_size_multiple=self.args.required_batch_size_multiple,
         seed=self.args.seed,
         num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
         shard_id=self.data_parallel_rank if shard_batch_itr else 0,
         num_workers=self.args.num_workers,
         epoch=epoch,
     )
예제 #2
0
    def __init__(self, args, task, models):
        super().__init__()
        self.args = args
        self.task = task
        self.models = nn.ModuleList(models)
        self.src_dict = task.source_dictionary
        self.tgt_dict = task.target_dictionary

        # optimize model for generation
        for model in self.models:
            model.prepare_for_inference_(args)

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        self.align_dict = utils.load_align_dict(
            getattr(args, 'replace_unk', None))

        self.tokenizer = encoders.build_tokenizer(args)
        self.bpe = encoders.build_bpe(args)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(),
            *[model.max_positions() for model in models])

        # this is useful for determining the device
        self.register_buffer('_float_tensor',
                             torch.tensor([0], dtype=torch.float))
예제 #3
0
 def get_valid_iterator(
     self,
     subset,
 ):
     """Return an EpochBatchIterator over given validation subset for a given epoch."""
     return self.task.get_batch_iterator(
         dataset=self.task.dataset(subset),
         max_tokens=self.args.max_tokens_valid,
         max_sentences=self.args.max_sentences_valid,
         max_positions=utils.resolve_max_positions(
             self.task.max_positions(),
             self.model.max_positions(),
         ),
         ignore_invalid_inputs=self.args.skip_invalid_size_inputs_valid_test,
         required_batch_size_multiple=self.args.required_batch_size_multiple,
         seed=self.args.seed,
         num_shards=self.data_parallel_world_size,
         shard_id=self.data_parallel_rank,
         num_workers=self.args.num_workers,
     )
예제 #4
0
파일: validate.py 프로젝트: zjc6666/wav2vec
def main(args, override_args=None):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    use_fp16 = args.fp16
    use_cuda = torch.cuda.is_available() and not args.cpu

    if use_cuda:
        torch.cuda.set_device(args.device_id)

    if override_args is not None:
        overrides = vars(override_args)
        overrides.update(eval(getattr(override_args, 'model_overrides', '{}')))
    else:
        overrides = None

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, model_args, task = checkpoint_utils.load_model_ensemble_and_task(
        [args.path],
        arg_overrides=overrides,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )
    model = models[0]

    # Move models to GPU
    for model in models:
        if use_fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Print args
    logger.info(model_args)

    # Build criterion
    criterion = task.build_criterion(model_args)
    criterion.eval()

    for subset in args.valid_subset.split(','):
        try:
            task.load_dataset(subset, combine=False, epoch=1)
            dataset = task.dataset(subset)
        except KeyError:
            raise Exception('Cannot find dataset: ' + subset)

        # Initialize data iterator
        itr = task.get_batch_iterator(
            dataset=dataset,
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences,
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                *[m.max_positions() for m in models],
            ),
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=args.required_batch_size_multiple,
            seed=args.seed,
            num_shards=args.distributed_world_size,
            shard_id=args.distributed_rank,
            num_workers=args.num_workers,
        ).next_epoch_itr(shuffle=False)
        progress = progress_bar.progress_bar(
            itr,
            log_format=args.log_format,
            log_interval=args.log_interval,
            prefix=f"valid on '{subset}' subset",
            default_log_format=('tqdm' if not args.no_progress_bar else 'simple'),
        )

        log_outputs = []
        for i, sample in enumerate(progress):
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            _loss, _sample_size, log_output = task.valid_step(sample, model, criterion)
            progress.log(log_output, step=i)
            log_outputs.append(log_output)

        if args.distributed_world_size > 1:
            log_outputs = distributed_utils.all_gather_list(
                log_outputs,
                max_size=getattr(args, 'all_gather_list_size', 16384),
            )
            log_outputs = list(chain.from_iterable(log_outputs))

        with metrics.aggregate() as agg:
            task.reduce_metrics(log_outputs, criterion)
            log_output = agg.get_smoothed_values()

        progress.print(log_output, tag=subset, step=i)
예제 #5
0
파일: generate.py 프로젝트: zjc6666/wav2vec
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(args, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            if 'src_tokens' in sample['net_input']:
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        args.remove_bpe,
                        escape_unk=True,
                        extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str), file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file)
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)).tolist(),
                        ))
                    ), file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
                        ), file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel()

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization")
            else:
                logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization")
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            'Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()),
            file=output_file)

    return scorer
예제 #6
0
파일: infer.py 프로젝트: zjc6666/wav2vec
def main(args, task=None, model_state=None):
    check_args(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 4000000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    if task is None:
        # Load dataset splits
        task = tasks.setup_task(args)
        task.load_dataset(args.gen_subset)
        logger.info("| {} {} {} examples".format(
            args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    label_path = os.path.join(args.data, "{}.word".format(args.gen_subset))
    labels = []
    with open(label_path, "r") as f:
        for line in f:
            labels.append(line)

    # Set dictionary
    tgt_dict = task.target_dictionary

    logger.info("| decoding with criterion {}".format(args.criterion))

    # Load ensemble

    if args.load_emissions:
        models, criterions = [], []
    else:
        logger.info("| loading model(s) from {}".format(args.path))
        models, criterions, _ = load_models_and_criterions(
            args.path,
            data_path=args.data,
            arg_overrides=eval(args.model_overrides),  # noqa
            task=task,
            model_state=model_state,
        )
        optimize_models(args, use_cuda, models)

    # hack to pass transitions to W2lDecoder
    if args.criterion == "asg_loss":
        trans = criterions[0].asg.trans.data
        args.asg_transitions = torch.flatten(trans).tolist()

    # Load dataset (possibly sharded)
    itr = get_dataset_itr(args, task, models)

    # Initialize generator
    gen_timer = StopwatchMeter()

    def build_generator(args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, task.target_dictionary)
        elif w2l_decoder == "kenlm":
            from speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "fairseqlm":
            from speech_recognition.w2l_decoder import W2lFairseqLMDecoder

            return W2lFairseqLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "ctc_decoder":
            from speech_recognition.ctc_decoder import CTCDecoder

            return CTCDecoder(args, task.target_dictionary)
        else:
            return super().build_generator(args)

    generator = build_generator(args)

    if args.load_emissions:
        generator = ExistingEmissionsDecoder(
            generator, np.load(args.load_emissions, allow_pickle=True))
        logger.info("loaded emissions from " + args.load_emissions)

    num_sentences = 0

    if args.results_path is not None and not os.path.exists(args.results_path):
        os.makedirs(args.results_path)

    max_source_pos = (utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]), )

    if max_source_pos is not None:
        max_source_pos = max_source_pos[0]
        if max_source_pos is not None:
            max_source_pos = max_source_pos[0] - 1

    if args.dump_emissions:
        emissions = {}
    if args.dump_features:
        features = {}
        models[0].bert.proj = None
    else:
        res_files = prepare_result_files(args)
    errs_t = 0
    lengths_t = 0
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if "net_input" not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample["target"][:, :args.prefix_size]

            gen_timer.start()
            if args.dump_emissions:
                with torch.no_grad():
                    encoder_out = models[0](**sample["net_input"])
                    emm = models[0].get_normalized_probs(encoder_out,
                                                         log_probs=True)
                    emm = emm.transpose(0, 1).cpu().numpy()
                    for i, id in enumerate(sample["id"]):
                        emissions[id.item()] = emm[i]
                    continue
            elif args.dump_features:
                with torch.no_grad():
                    encoder_out = models[0](**sample["net_input"])
                    feat = encoder_out["encoder_out"].transpose(
                        0, 1).cpu().numpy()
                    for i, id in enumerate(sample["id"]):
                        padding = encoder_out["encoder_padding_mask"][i].cpu().numpy() \
                            if encoder_out["encoder_padding_mask"] is not None else None
                        features[id.item()] = (feat[i], padding)
                    continue
            hypos = task.inference_step(generator, models, sample,
                                        prefix_tokens)
            tokens_len = 0
            for h in hypos:
                try:
                    h_len = len(h[0]["tokens"])
                    tokens_len += h_len
                except Exception as ex:
                    print(ex)
            num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample["id"].tolist()):
                speaker = None
                # id = task.dataset(args.gen_subset).ids[int(sample_id)]
                id = sample_id
                toks = sample["target"][
                    i, :] if 'target_label' not in sample else sample[
                        "target_label"][i, :]
                target_tokens = (utils.strip_pad(toks,
                                                 tgt_dict.pad()).int().cpu())
                # Process top predictions
                errs, length = process_predictions(args, hypos[i], None,
                                                   tgt_dict, target_tokens,
                                                   res_files, speaker, id,
                                                   labels)
                errs_t += errs
                lengths_t += length

            wps_meter.update(num_generated_tokens)
            t.log({"wps": round(wps_meter.avg)})
            num_sentences += sample[
                "nsentences"] if "nsentences" in sample else sample[
                    "id"].numel()

    wer = None
    if args.dump_emissions:
        emm_arr = []
        for i in range(len(emissions)):
            emm_arr.append(emissions[i])
        np.save(args.dump_emissions, emm_arr)
        logger.info(
            f"saved {len(emissions)} emissions to {args.dump_emissions}")
    elif args.dump_features:
        feat_arr = []
        for i in range(len(features)):
            feat_arr.append(features[i])
        np.save(args.dump_features, feat_arr)
        logger.info(f"saved {len(features)} emissions to {args.dump_features}")
    else:
        if lengths_t > 0:
            wer = errs_t * 100.0 / lengths_t
            logger.info(f"WER: {wer}")

        logger.info("| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
                    "sentences/s, {:.2f} tokens/s)".format(
                        num_sentences,
                        gen_timer.n,
                        gen_timer.sum,
                        num_sentences / gen_timer.sum,
                        1.0 / gen_timer.avg,
                    ))
        logger.info("| Generate {} with beam={}".format(
            args.gen_subset, args.beam))
    return task, wer
예제 #7
0
def main(args):
    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator,
                                               models,
                                               sample,
                                               constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if args.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((start_id + id, src_tokens_i, hypos, {
                    "constraints": constraints,
                    "time": translate_time / len(translations)
                }))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results,
                                                   key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(
                        id_, tgt_dict.string(constraint, args.remove_bpe)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id_, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id_,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(
        time.time() - start_time, total_translate_time))
예제 #8
0
def main(parsed_args, **unused_kwargs):
    assert parsed_args.path is not None, '--path required for evaluation!'

    if torch.cuda.is_available() and not parsed_args.cpu:
        torch.cuda.set_device(parsed_args.device_id)

    utils.import_user_module(parsed_args)

    logger.info(parsed_args)

    use_cuda = torch.cuda.is_available() and not parsed_args.cpu

    task = tasks.setup_task(parsed_args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(parsed_args.path))
    models, args = checkpoint_utils.load_model_ensemble(
        parsed_args.path.split(os.pathsep),
        arg_overrides=eval(parsed_args.model_overrides),
        task=task,
        suffix=getattr(parsed_args, "checkpoint_suffix", ""),
    )

    for arg in vars(parsed_args).keys():
        if arg not in {
            'self_target', 'future_target', 'past_target', 'tokens_per_sample',
            'output_size_dictionary', 'add_bos_token',
        }:
            setattr(args, arg, getattr(parsed_args, arg))

    # reduce tokens per sample by the required context window size
    args.tokens_per_sample -= args.context_window
    task = tasks.setup_task(args)

    # Load dataset splits
    task.load_dataset(args.gen_subset)
    dataset = task.dataset(args.gen_subset)
    if args.context_window > 0:
        dataset = LMContextWindowDataset(
            dataset=dataset,
            tokens_per_sample=args.tokens_per_sample,
            context_window=args.context_window,
            pad_idx=task.source_dictionary.pad(),
        )
    logger.info('{} {} {} examples'.format(args.data, args.gen_subset, len(dataset)))

    # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer)
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    assert len(models) > 0

    logger.info('num. model params: {}'.format(sum(p.numel() for p in models[0].parameters())))

    itr = task.get_batch_iterator(
        dataset=dataset,
        max_tokens=args.max_tokens or 36000,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(*[
            model.max_positions() for model in models
        ]),
        ignore_invalid_inputs=True,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    gen_timer = StopwatchMeter()
    scorer = SequenceScorer(task.target_dictionary, args.softmax_batch)

    score_sum = 0.
    count = 0

    if args.remove_bpe is not None:
        if args.remove_bpe == 'sentencepiece':
            raise NotImplementedError
        else:
            bpe_cont = args.remove_bpe.rstrip()
            bpe_toks = {
                i
                for i in range(len(task.source_dictionary))
                if task.source_dictionary[i].endswith(bpe_cont)
            }
        bpe_len = len(bpe_cont)
    else:
        bpe_toks = None
        bpe_len = 0

    word_stats = dict()

    wps_meter = TimeMeter()

    for sample in progress:
        if 'net_input' not in sample:
            continue

        sample = utils.move_to_cuda(sample) if use_cuda else sample

        gen_timer.start()
        hypos = scorer.generate(models, sample)
        gen_timer.stop(sample['ntokens'])

        for i, hypos_i in enumerate(hypos):
            hypo = hypos_i[0]
            sample_id = sample['id'][i]

            tokens = hypo['tokens']
            tgt_len = tokens.numel()
            pos_scores = hypo['positional_scores'].float()

            if getattr(args, 'add_bos_token', False):
                assert hypo['tokens'][0].item() == task.target_dictionary.bos()
                tokens = tokens[1:]
                pos_scores = pos_scores[1:]

            skipped_toks = 0
            if bpe_toks is not None:
                for i in range(tgt_len - 1):
                    if tokens[i].item() in bpe_toks:
                        skipped_toks += 1
                        pos_scores[i + 1] += pos_scores[i]
                        pos_scores[i] = 0

            inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf'))
            if inf_scores.any():
                logger.info(
                    'skipping tokens with inf scores:',
                    task.target_dictionary.string(tokens[inf_scores.nonzero()])
                )
                pos_scores = pos_scores[(~inf_scores).nonzero()]
            score_sum += pos_scores.sum().cpu()
            count += pos_scores.numel() - skipped_toks

            if args.output_word_probs or args.output_word_stats:
                w = ''
                word_prob = []
                is_bpe = False
                for i in range(len(tokens)):
                    w_ind = tokens[i].item()
                    w += task.source_dictionary[w_ind]
                    if bpe_toks is not None and w_ind in bpe_toks:
                        w = w[:-bpe_len]
                        is_bpe = True
                    else:
                        word_prob.append((w, pos_scores[i].item()))

                        next_prob = None
                        ind = i + 1
                        while ind < len(tokens):
                            if pos_scores[ind].item() != 0:
                                next_prob = pos_scores[ind]
                                break
                            ind += 1

                        word_stats.setdefault(w, WordStat(w, is_bpe)).add(pos_scores[i].item(), next_prob)
                        is_bpe = False
                        w = ''
                if args.output_word_probs:
                    logger.info(
                        str(int(sample_id)) + " "
                        + ('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob))
                    )

        wps_meter.update(sample['ntokens'])
        progress.log({'wps': round(wps_meter.avg)})

    avg_nll_loss = -score_sum / count / math.log(2)  # convert to base 2
    logger.info('Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(
        gen_timer.n, gen_timer.sum, 1. / gen_timer.avg
    ))
    logger.info('Loss (base 2): {:.4f}, Perplexity: {:.2f}'.format(
        avg_nll_loss, 2**avg_nll_loss
    ))

    if args.output_word_stats:
        for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True):
            logger.info(ws)