예제 #1
0
def pca_U(channelDataList,
          informations,
          centroidList,
          clusterAssment,
          newDimension=1):
    newChannelDataList = []
    U2s = []

    rates = np.array(np.zeros((len(channelDataList), 2)), dtype=complex)
    # 为了输出,要把rates放到list中
    rateList = []

    # 计算变换矩阵
    for i in range(len(centroidList)):
        U2 = centroidList[i][:, 0:newDimension]
        U2s.append(U2)

    # 降维
    for i in range(len(channelDataList)):
        newChannelData = np.dot(channelDataList[i],
                                U2s[(int)(clusterAssment[i, 0].real)])
        newChannelDataList.append(newChannelData)

    newCovMatrixList = tools.getCovMatrixList(newChannelDataList)
    newInformation = tools.getInformations(newCovMatrixList)[0]

    for i in range(len(channelDataList)):
        rate2 = newInformation[0][i] / informations[0][i]
        rates[i, 1] = rate2

    rateList.append(rates)
    return newChannelDataList, newCovMatrixList, U2s, rateList
예제 #2
0
파일: elbow.py 프로젝트: jinruimeng/keyan
def elbowCore(channelDataAll, a, k, iRate, schedule):
    n = np.shape(channelDataAll[0])[1]  # 列数
    p = len(channelDataAll)  # 页数
    sub = n >> a
    rates_C = []
    rates_U = []
    rates_S = []

    for g in range(1 << a):
        # 显示进度
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分开始!')

        channelData = []
        for h in range(p):
            channelDataPage = channelDataAll[h]
            channelData.append(channelDataPage[:, g * sub:(g + 1) * sub])

        covMatrixList = tools.getCovMatrixList(channelData)
        allCovMatrix = tools.matrixListToMatrix(covMatrixList)

        # 对协方差进行聚类
        centroids, clusterAssment = kmeans.KMeansOushi(allCovMatrix, k)
        centroidList = tools.matrixToMatrixList(centroids)

        # 计算原信道信息量、协方差矩阵特征值、变换矩阵
        informations, SigmaList, UList = tools.getInformations(covMatrixList)

        # 分析PCA效果,计算信息量保留程度
        tmpRates = pca.pca(channelData, informations, centroidList, clusterAssment, iRate)[3][0][:, 1]
        rates_C.append(np.mean(tmpRates))

        # 对变换矩阵进行聚类
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)
        centroids, clusterAssment = kmeans.KMeansOushi_U(allU, k, weights, iRate)
        centroidList = tools.matrixToMatrixList_U(centroids)

        # 分析PCA效果,计算信息量保留程度
        tmpRates = pca.pca_U(channelData, informations, centroidList, clusterAssment, iRate)[3][0][:, 1]
        rates_U.append(np.mean(tmpRates))

        # 不聚类,直接PCA
        tmpRates = pca.pca_S(SigmaList, iRate)[0][:, 1]
        rates_S.append(np.mean(tmpRates))

        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    rate_C = np.mean(rates_C)
    rate_U = np.mean(rates_U)
    rate_S = np.mean(rates_S)

    return rate_S.real, rate_C.real, rate_U.real
def clusterCore(channelData1, covMatrixList1, channelData2, centroids, centroidUList, type):
    newChannelData1 = []
    newChannelData2 = []
    newDimension = np.shape(centroidUList[0])[1]
    p = np.shape(channelData1)[0]

    if type == "C":
        # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
        allCovMatrix1 = tools.matrixListToMatrix(covMatrixList1)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment(allCovMatrix1, centroids)

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(np.dot(channelData2[i], centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "U":
        informations, SigmaList, UList = tools.getInformations(covMatrixList1)
        allU = tools.matrixListToMatrix_U(UList)
        weights = tools.matrixListToMatrix_U(SigmaList)

        # 确定每个数据分别属于哪个簇
        clusterAssment = kmeans.getClusterAssment_U(allU, weights, centroids, newDimension)

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], centroidUList[(int)(clusterAssment[i, 0].real)]))
            newChannelData2.append(np.dot(channelData2[i], centroidUList[(int)(clusterAssment[i, 0].real)]))

    if type == "S":
        covMatrixList2 = tools.getCovMatrixList(channelData2)
        UList1 = tools.getInformations(covMatrixList1)[2]
        UList2 = tools.getInformations(covMatrixList2)[2]
        iRate = np.shape(centroidUList[0])[1]

        # 变换域
        for i in range(p):
            newChannelData1.append(np.dot(channelData1[i], UList1[i][:, 0:iRate]))
            newChannelData2.append(np.dot(channelData2[i], UList2[i][:, 0:iRate]))

    # 输出处理后的信道数据
    # path = u'/Users/jinruimeng/Downloads/keyan/'
    # nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    # pathSuffix = type + "_" + slice + "_" + nowTime
    #
    # outNewChannel1ListPath = path + "clusterAddNoise_outNewChannel1List_" + pathSuffix
    # outNewChannel2ListPath = path + "clusterAddNoise_outNewChannel2List_" + pathSuffix
    # readAndWriteDataSet.write(newChannelData1, outNewChannel1ListPath, ".xlsx")
    # readAndWriteDataSet.write(newChannelData2, outNewChannel2ListPath, ".xlsx")

    return newChannelData1, newChannelData2
def cluster(schedule, channelDataAll1, channelDataAll2, allCentroidsC, allCentroidUList, a, low, high, step):
    inconsistencyRates_old = []
    inconsistencyRates_new_noCom = []
    inconsistencyRates_new = []
    for g in range(1, (1 << a) + 1):
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分开始!')

        channelData1 = []
        channelData2 = []

        for i in range(np.shape(channelDataAll1)[0]):
            channelData1.append(channelDataAll1[i][:, (g - 1) * sub:g * sub])
            channelData2.append(channelDataAll2[i][:, (g - 1) * sub:g * sub])

            # 计算信道协方差矩阵呢
        covMatrixList1 = tools.getCovMatrixList(channelData1)

        newChannelData01, newChannelData02 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsC[g - 1], allCentroidUList[g - 1], "S")
        newChannelData1, newChannelData2 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsC[g - 1], allCentroidUList[g - 1], "C")

        # 量化并计算不一致率
        for i in range(low, high + 1, step):
            bit_inconsistencyRates_old = []
            bit_inconsistencyRates_new_noCom = []
            bit_inconsistencyRates_new = []
            for j in range(np.shape(channelData1)[0]):
                oldKey1, oldKey2 = quantification.quantificate(channelData1[j], channelData2[j], i)
                newKey01, newKey02 = quantification.quantificate(newChannelData01[j], newChannelData02[j], i)
                newKey1, newKey2 = quantification.quantificate(newChannelData1[j], newChannelData2[j], i)
                inconsistencyRate_old = quantification.getInconsistencyRate(oldKey1, oldKey2)
                inconsistencyRate_new_noCom = quantification.getInconsistencyRate(newKey01, newKey02)
                inconsistencyRate_new = quantification.getInconsistencyRate(newKey1, newKey2)
                bit_inconsistencyRates_old.append(inconsistencyRate_old)
                bit_inconsistencyRates_new_noCom.append(inconsistencyRate_new_noCom)
                bit_inconsistencyRates_new.append(inconsistencyRate_new)
            if g == 1:
                inconsistencyRates_old.append(mean(bit_inconsistencyRates_old))
                inconsistencyRates_new_noCom.append(mean(bit_inconsistencyRates_new_noCom))
                inconsistencyRates_new.append(mean(bit_inconsistencyRates_new))
            else:
                inconsistencyRates_old[i - low] += mean(bit_inconsistencyRates_old)
                inconsistencyRates_new_noCom[i - low] += mean(bit_inconsistencyRates_new_noCom)
                inconsistencyRates_new[i - low] += mean(bit_inconsistencyRates_new)
        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    for g in range(np.shape(inconsistencyRates_old)[0]):
        inconsistencyRates_old[g] = inconsistencyRates_old[g] / (1 << a)
        inconsistencyRates_new_noCom[g] = inconsistencyRates_new_noCom[g] / (1 << a)
        inconsistencyRates_new[g] = inconsistencyRates_new[g] / (1 << a)
    return inconsistencyRates_old, inconsistencyRates_new_noCom, inconsistencyRates_new
예제 #5
0
def cluster(a, schedule, channelDataAll1, channelDataAll2, allCentroidsC, allCentroidUList, allCentroidsU,
            allCentroidUList2):
    newPca1 = []
    newPca2 = []
    newC1 = []
    newC2 = []
    newU1 = []
    newU2 = []
    newWt1 = []
    newWt2 = []
    for g in range(1, (1 << a) + 1):
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分开始!')

        channelData1 = []
        channelData2 = []
        for i in range(np.shape(channelDataAll1)[0]):
            channelData1.append(channelDataAll1[i][:, (g - 1) * sub:g * sub])
            channelData2.append(channelDataAll2[i][:, (g - 1) * sub:g * sub])

        # 计算信道协方差矩阵
        covMatrixList1 = tools.getCovMatrixList(channelData1)

        # 无交互PCA
        tmpNewPca1, tmpNewPca2 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsC[g - 1],
                                             allCentroidUList[g - 1], "general")
        newPca1.append(tmpNewPca1)
        newPca2.append(tmpNewPca2)

        # 聚类协方差矩阵
        tmpNewC1, tmpNewC2 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsC[g - 1],
                                         allCentroidUList[g - 1], "C")
        newC1.append(tmpNewC1)
        newC2.append(tmpNewC2)

        # 聚类变换矩阵
        tmpNewU1, tmpNewU2 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsU[g - 1],
                                         allCentroidUList2[g - 1], "U")
        newU1.append(tmpNewU1)
        newU2.append(tmpNewU2)

        # DCT变换
        tmpNewWt1, tmpNewWt2 = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsU[g - 1],
                                           allCentroidUList2[g - 1], "wt")
        newWt1.append(tmpNewWt1)
        newWt2.append(tmpNewWt2)

        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    return newPca1, newPca2, newC1, newC2, newU1, newU2, newWt1, newWt2
예제 #6
0
파일: elbow.py 프로젝트: jinruimeng/keyan
def elbow2(channelDataAll, low, high, step, a, schedule):
    # 检查参数合理性
    if low <= 0:
        print(u'下限太低:下限小于等于0!')
        return

    if high >= (shape(channelDataAll[0])[1] / (1 << a)):
        print(u'上限太高:降维后维度数大于原数据维度!')
        return

    # 计算PCA的总次数
    time1 = ((int)((high - low) / step + 1))
    time2 = 1 << a
    schedule[0] = time2

    # 利用SSE选择k
    SSE_S = []  # 存放所有结果
    rates_S = np.array(np.zeros((time2, time1)))  # 存放单次结果

    n = np.shape(channelDataAll[0])[1]  # 列数
    p = len(channelDataAll)  # 页数
    sub = n >> a
    for g in range(time2):
        channelData = []
        for h in range(p):
            channelDataPage = channelDataAll[h]
            channelData.append(channelDataPage[:, g * sub:(g + 1) * sub])

        covMatrixList = tools.getCovMatrixList(channelData)

        # 计算原信道信息量、协方差矩阵特征值、变换矩阵
        informations, SigmaList, UList = tools.getInformations(covMatrixList)
        for h in range(time1):
            tmpRates = pca.pca_S(SigmaList, h * step + low)[0][:, 1]
            rates_S[g, h] = np.mean(tmpRates).real

        # 显示进度
        schedule[1] += 1
        print(u'共' + str(schedule[0]) + u'轮,' + u'已完成' + str(schedule[1]) + u'轮,' + u'完成度:' + '%.2f%%' % (
                schedule[1] / schedule[0] * 100) + u'!')

    for h in range(time1):
        SSE_S.append(np.mean(rates_S[:, h]))
    plt.xlabel(u'保留维度数k')

    X = range(low, high + 1, step)
    plt.ylabel(u'特征值保留')
    plt.plot(X, SSE_S, 'k-s')
    plt.show()
    print(u'主进程结束!')
예제 #7
0
def cluster(a, schedule, channelDataAll1, channelDataAll2, allCentroidsC,
            allCentroidUList, allCentroidsU, allCentroidUList2):
    totalOldCorr = []
    totalPcaCorr = []
    totalNewCCorr = []
    totalNewUCorr = []
    for g in range(1, (1 << a) + 1):
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
              u'部分开始!')

        channelData1 = []
        channelData2 = []
        for i in range(np.shape(channelDataAll1)[0]):
            channelData1.append(channelDataAll1[i][:, (g - 1) * sub:g * sub])
            channelData2.append(channelDataAll2[i][:, (g - 1) * sub:g * sub])

        # 计算信道协方差矩阵呢
        covMatrixList1 = tools.getCovMatrixList(channelData1)

        allOldCorr = clusterCore(channelData1, covMatrixList1, channelData2,
                                 allCentroidsC[g - 1], allCentroidUList[g - 1],
                                 "none")
        totalOldCorr.append(allOldCorr)

        allNewPcaCorr = clusterCore(channelData1, covMatrixList1, channelData2,
                                    allCentroidsC[g - 1],
                                    allCentroidUList[g - 1], "general")
        totalPcaCorr.append(allNewPcaCorr)

        allNewCCorr = clusterCore(channelData1, covMatrixList1, channelData2,
                                  allCentroidsC[g - 1],
                                  allCentroidUList[g - 1], "C")
        totalNewCCorr.append(allNewCCorr)

        allNewUCorr = clusterCore(channelData1, covMatrixList1, channelData2,
                                  allCentroidsU[g - 1],
                                  allCentroidUList2[g - 1], "U")
        totalNewUCorr.append(allNewUCorr)

        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
              u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' +
              '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    return totalOldCorr, totalPcaCorr, totalNewCCorr, totalNewUCorr
예제 #8
0
def pca_general(data, newDimension=1):
    try:
        # 如果输入是单个信道,进行以下步骤
        m, n = np.shape(data)
        # 计算协方差矩阵 rowvar=False代表每一列是一个变量
        covMatrix = np.cov(data, rowvar=False)
        # SVD分解协方差矩阵得出变换矩阵
        U = np.transpose(np.linalg.svd(covMatrix)[2])
        return np.dot(data, U[:, 0:newDimension])

    except:
        print(u'pca_general')
        # 如果输入是列表,进行以下步骤
        out = []
        covList = tools.getCovMatrixList(data)
        UList = tools.getInformations(covList)[2]
        for i in range(len(data)):
            out.append(np.dot(data[i], UList[i][:, 0:newDimension]))
        return out
예제 #9
0
def pca(channelData, informations, centroidList, clusterAssment, rate=1):
    U2s = []
    rates = np.array(np.zeros((len(channelData), 2)), dtype=complex)
    rateList = []
    newChannelDataList = []

    # 计算变换矩阵
    for i in range(len(centroidList)):
        U, Sigma, VT = np.linalg.svd(centroidList[i])
        sum = np.sum(Sigma)
        curSum = 0
        index = 0
        if rate <= 1:
            for j in range(len(Sigma)):
                curSum += Sigma[j]
                if rate - (curSum / sum) > 0:
                    index += 1
                else:
                    break
        else:
            index = rate - 1
        U2 = np.transpose(VT[0:index + 1, :])
        U2s.append(U2)

    # 降维
    for i in range(len(channelData)):
        newChannelData = np.dot(channelData[i],
                                U2s[(int)(clusterAssment[i, 0].real)])
        newChannelDataList.append(newChannelData)
        index = np.shape(newChannelData)[1]
        rates[i, 0] = index

    newCovMatrixList = tools.getCovMatrixList(newChannelDataList)
    newInformations = tools.getInformations(newCovMatrixList)[0]

    for i in range(len(channelData)):
        rate2 = newInformations[0][i] / informations[0][i]
        rates[i, 1] = rate2

    rateList.append(rates)
    return newChannelDataList, newCovMatrixList, U2s, rateList
예제 #10
0
def cluster(a, schedule, channelDataAll1, channelDataAll2, allCentroidsC, allCentroidUList, allCentroidsU, allCentroidUList2):
    allOldCorr = []
    allNewCCorr = []
    allNewUCorr = []
    for g in range(1, (1 << a) + 1):
        schedule[1] += 1
        tmpSchedule = schedule[1]
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分开始!')

        channelData1 = []
        channelData2 = []
        for i in range(p):
            channelData1.append(channelDataAll1[i][:, (g - 1) * sub:g * sub])
            channelData2.append(channelDataAll2[i][:, (g - 1) * sub:g * sub])
        oldCorr = []
        channelDatas1 = tools.matrixListToMatrix_U(channelData1)
        channelDatas2 = tools.matrixListToMatrix_U(channelData2)
        # 计算信道协方差矩阵呢
        covMatrixList1 = tools.getCovMatrixList(channelData1)

        for i in range(np.shape(channelData1)[0]):
            oldCorr.append(np.corrcoef(channelDatas1[i, :], channelDatas2[i, :]))
        allOldCorr.append(np.mean(oldCorr))

        newCCorrMean = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsC[g - 1],
                                   allCentroidUList[g - 1], "C")
        allNewCCorr.append(newCCorrMean)

        newUCorrMean = clusterCore(channelData1, covMatrixList1, channelData2, allCentroidsU[g - 1],
                                   allCentroidUList2[g - 1], "U")
        allNewUCorr.append(newUCorrMean)

        # 显示进度
        print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) + u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' % (schedule[1] / schedule[0] * 100) + u'!')

    return abs(np.mean(allOldCorr)), abs(np.mean(allNewCCorr)), abs(np.mean(allNewUCorr))
예제 #11
0
def getCentroids(schedule, path, suffix, channelData, g, k, iRate, type=u'C'):
    # 校验数据正确性
    if k > np.shape(channelData)[0]:
        print(u'聚类中心数量不能大于样本数量!')
        return
    if iRate > np.shape(channelData)[1]:
        print(u'降维后维度不能大于样本原有的维度!')
        return
    if k <= 0 or iRate <= 0:
        print(u'聚类中心数量和降维后维度不能小于1!')
        return

    schedule[1] += 1
    tmpSchedule = schedule[1]
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分开始!')

    # 得到相关系数矩阵并输出,然后放到一个矩阵中
    covMatrixList = tools.getCovMatrixList(channelData)
    informations, SigmaList, UList = tools.getInformations(covMatrixList)

    if type == u'total':
        # 对协方差进行聚类
        getCentroidsCore(path, suffix, channelData, covMatrixList,
                         informations, SigmaList, UList, g, k, iRate, "C")
        # 对变换矩阵进行聚类
        getCentroidsCore(path, suffix, channelData, covMatrixList,
                         informations, SigmaList, UList, g, k, iRate, "U")
    else:
        getCentroidsCore(path, suffix, channelData, covMatrixList,
                         informations, SigmaList, UList, g, k, iRate, type)

    # 显示进度
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' %
          (schedule[1] / schedule[0] * 100) + u'!')
예제 #12
0
def cluster(schedule, path, suffix, channelData, g, iRate):
    if iRate > np.shape(channelData)[1]:
        print(u'降维后维度不能大于样本原有的维度!')
        return
    if iRate <= 0:
        print(u'降维后维度不能小于1!')
        return

    schedule[1] += 1
    tmpSchedule = schedule[1]
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分开始!')

    pathSuffix = "C" + "_" + str(g) + "_"
    centroidListPath = path + "getCentroids_outCentroidList_" + pathSuffix

    nowTime = time.strftime("%Y-%m-%d.%H.%M.%S", time.localtime(time.time()))
    pathSuffix = pathSuffix + str(nowTime)

    outOldCovMatrixListPath = path + "cluster_outOldCovMatrixList_" + pathSuffix
    outClusterAssmentPath = path + "cluster_outClusterAssment_" + pathSuffix
    outNewChannelDataPath = path + "cluster_outNewChannelData_" + pathSuffix
    outNewCovMatrixsPath = path + "cluster_outNewCovMatrixList_" + pathSuffix
    ratesPath = path + "cluster_rates_" + pathSuffix
    UTsPath = path + "cluster_UTs_" + pathSuffix

    # 读入聚类中心信息
    # 合并多个文件
    centroidList = []
    for root, dirs, files in os.walk(path, topdown=True):
        for file in files:
            file = os.path.join(root, file)
            if centroidListPath in file:
                centroidListTmp = readAndWriteDataSet.excelToMatrixList(file)
                for centroid in centroidListTmp:
                    centroidList.append(centroid)
        break
    centroids = tools.matrixListToMatrix(centroidList)

    # 计算信道相关系数矩阵并输出,然后放到一个矩阵中
    covMatrixList = tools.getCovMatrixList(channelData)
    allCovMatrix = tools.matrixListToMatrix(covMatrixList)

    # 确定每个数据分别属于哪个簇
    clusterAssment = kmeans.getClusterAssment(allCovMatrix, centroids)
    clusterAssmentList = []
    clusterAssmentList.append(clusterAssment)

    # 分析PCA效果
    newChannelData, newCovMatrixList, UTs, rates = pca.pca(
        channelData, covMatrixList, centroidList, clusterAssment, iRate)

    # 输出结果
    # 输出聚类结果
    readAndWriteDataSet.write(clusterAssmentList, outClusterAssmentPath,
                              suffix)
    # 协方差矩阵太大了,先不输出
    # readAndWriteDataSet.write(covMatrixList, outOldCovMatrixListPath, suffix)
    # 输出PCA结果
    readAndWriteDataSet.write(newChannelData, outNewChannelDataPath, suffix)
    readAndWriteDataSet.write(newCovMatrixList, outNewCovMatrixsPath, suffix)
    readAndWriteDataSet.write(UTs, UTsPath, suffix)
    readAndWriteDataSet.write(rates, ratesPath, suffix)

    # 显示进度
    print(u'共' + str(schedule[0]) + u'部分,' + u'第' + str(tmpSchedule) +
          u'部分完成,' + u'已完成' + str(schedule[1]) + u'部分,' + u'完成度:' + '%.2f%%' %
          (schedule[1] / schedule[0] * 100) + u'!')