def build(self, shape): dense = L.Dense(units=self.units) dense.build(shape) k_shape = dense.kernel.shape b_shape = dense.bias.shape k_size = get_size(k_shape) b_size = get_size(b_shape) self.hyper_layer = N.Layer(self.ai, units=k_size + b_size) self.reshape_kernel = L.Reshape(k_shape) self.reshape_bias = L.Reshape(b_shape) self.split = L.Lambda(lambda x: tf.split(x, [k_size, b_size])) super().build(shape)
def auto_index(elastic, in_file_path, out_path): with open(in_file_path, "r") as ini: best_index = "" best_index_bytes = "a".encode() biggest_size = 0 for line in ini: if not line.startswith("{\"index") and not line.startswith("\n"): json_line = json.loads(line) # print(json_line) auto_index_elastic.bulk_data(elastic, json_line) auto_index = auto_index_elastic.get_mapping(elastic) auto_index_bytes = json.dumps(auto_index).encode() auto_index_elastic.clear_test_mapping(elastic) if auto_index_bytes != best_index_bytes: size_obj = tools.get_size(auto_index) if size_obj.exact_size > biggest_size: best_index = auto_index biggest_size = size_obj.exact_size best_index_bytes = auto_index_bytes print(best_index) print(size_obj.size, size_obj.unit) with open(out_path, "w") as out: json.dump(best_index["tmp_index"], out) return best_index["tmp_index"]
def build(self, shape): dense = L.Dense(self.units) dense.build([shape[0], get_size(shape[1:])]) self.kernel = self.add_weight( "kernel", dense.kernel.shape, initializer=self.init, trainable=self.trainable) self.flatten = L.Flatten() super().build(shape)
def __init__(self, AI, out_shape, key=KEY): super(Resizer, self).__init__() size = get_size(out_shape) self.resize = nature.FC(units=size) self.reshape = L.Reshape(out_shape) self.fn = nature.Fn(AI, key=key) self.out_shape = out_shape self.flatten = L.Flatten() self.built = True
def createPathUi(): top = Toplevel() top.title('图片目录选择') top.geometry(tools.get_size(width=240, height=100)) top.resizable(0, 0) pathVar = StringVar() lable_path = Label(top, text='路径选择:') entry_path = Entry(top, textvariable=pathVar) button = Button(top, text="选择目录", width=19, command=lambda: selectPath(pathVar, top)) # 放置部件 lable_path.grid(row=0, column=0) entry_path.grid(row=0, column=1) button.grid(row=1, column=1)
def init_Window(self): # GUI标题 self.master.title("OCR批量识别身份证") # 窗口大小 self.master.geometry(tools.get_size(width=300, height=400)) self.master.resizable(0, 0) MenuBar = Menu(self.master) MenuBar.add_cascade(label="开始运行", command=lambda: ocr.main(text)) MenuBar.add_cascade(label="百度API设置", command=MenuBarUi.createAPiUi) MenuBar.add_cascade(label="选择图片目录", command=MenuBarUi.createPathUi) self.master.config(menu=MenuBar) scroll = Scrollbar() text = Text(self.master, width=40, height=400) scroll.pack(side=RIGHT, fill=Y) text.pack(side=RIGHT, fill=Y) scroll.config(command=text.yview) text.config(yscrollcommand=scroll.set)
def createAPiUi(): top = Toplevel() top.title('API设置') top.geometry(tools.get_size(width=240, height=100)) top.resizable(0, 0) akVar = StringVar() skVar = StringVar() lable_ak = Label(top, text='Api Key:') lable_sk = Label(top, text='Secret Key:') entry_ak = Entry(top, textvariable=akVar) entry_sk = Entry(top, textvariable=skVar) button = Button(top, text="确定", width=19, command=lambda: submit(akVar=akVar, skVar=skVar, top=top)) # 放置部件 lable_ak.grid(row=0, column=0) lable_sk.grid(row=1, column=0) entry_ak.grid(row=0, column=1) entry_sk.grid(row=1, column=1) button.grid(row=2, column=1)
def __init__(self, agent, task_id, in_spec, out_spec, in_number=None): super(Interface, self).__init__() self.pull_numbers = agent.pull_numbers self.pull_choices = agent.pull_choices self.agent = agent self.probabilistic = agent.probabilistic self.task_id, self.in_spec, self.out_spec = task_id, in_spec, out_spec self.brick_id = f"{task_id}{'_'+str(in_number) if in_number else ''}_{in_spec.format}_to_{out_spec.format}_{generate()}" self.debug = 1 if "predictor" in self.brick_id else 0 log("", debug=self.debug) log(f"Interface.__init__ -- {self.brick_id}", debug=self.debug) log("in_spec", in_spec, debug=self.debug) log("out_spec", out_spec, debug=self.debug) self.input_layer_number = in_number self.shape_variable_key = None if self.in_spec.format == "image": self.channels_before_concat_coords = self.in_spec.shape[-1] self.size_to_resize_to = get_hw(self.in_spec.shape) encoder_shape = self.add_coords_to_shape(self.in_spec.shape) self.in_spec = get_spec(format="image", shape=encoder_shape) self.in_spec.size = get_size(encoder_shape) super(Interface, self).__init__() self.build()
import sys from trie import Trie from bloom_filter import BloomFilter from tools import get_size if __name__ == '__main__': bf_dups = 0 tr = Trie() bf = BloomFilter(capacity=700000, error_rate=0.001) with open("words.txt") as file: for line in file: tr.put(line.strip()) if bf.put(line.strip()): print("Duplicate in bloom filter: {0}".format(line.strip())) bf_dups += 1 print("Trie. number of objects put: {0}".format(len(tr))) print("Bloom filter. number of objects put: {0}".format(len(bf))) print() print("Trie. Size of the object: {0}".format(sys.getsizeof(tr))) print("Bloom filter. Size of the object: {0}".format(sys.getsizeof(bf))) print() print("Trie. Size of the object(full): {0}".format(get_size(tr))) print("Bloom filter. Size of the object(full): {0}".format(get_size(bf))) print() print("Bloom filter errors: {0}".format(bf_dups)) print("----------------------------------------------------------")
def get_units(shape): d_in = get_size(shape) return d_in * d_in + 1