def findBestPictureWithMethod(): from analysis import getPrCurve from tools import saveData d = getPrCurve(allMethods, 1000) #d[3]['img']['0.jpg']['MEAN'].keys() d = d[3]['img'] aucs = { name: {method: d[name][method]['auc'] for method in d[name]} for name in d } # auc = d['13.jpg']['RC']['auc'] saveData(aucs, 'aucs') def sortGood(myMethod='ME1', compare='DISC2'): l = [(name, aucs[name][myMethod] - aucs[name][compare]) for name in aucs] l.sort(key=lambda x: x[1]) return l # [showpr(i) for i,j in l] def sortAucByMethod(method='ME1'): l = [(name, aucs[name][method]) for name in aucs] l.sort(key=lambda x: x[1]) return l return sortGood()
def plotPrCurve(precisions, recalls, labels=None, avgPreScore=-1, save=None): ''' recalls, precision: list of PR curves labels: each line's name save: if is string of path, save plot img and data to path ''' n = len(recalls) if isinstance(recalls, list) else 1 if labels == None: labels = range(n) if n != 1 else 'line' if n == 1 and not isinstance(recalls, list): precisions = [precisions] recalls = [recalls] labels = [labels] plt.clf() color = ['r', 'b', 'k', 'g', 'c', 'y', 'm'] lineStyle = '-', '--', ':', '-.' colors = [] for i in lineStyle: colors += map(lambda x: x + i, color) for recall, precision, label, i in zip(recalls, precisions, labels, range(len(recalls))): plt.plot(recall, precision, colors[i % len(colors)], lw=1, label=label) plt.xlabel('Recall') plt.ylabel('Precision') # plt.axis('equal') plt.axis([0., 1., 0., 1.]) plt.title('Avg of {0:d} line\'s AUC={1:0.2f}'.format(n, avgPreScore)) plt.legend(bbox_to_anchor=(0., 0, .8, 1.1), loc=3, ncol=3, mode="expand", borderaxespad=0.) plt.grid() if save != None: if not isinstance(save, str) and not isinstance(save, unicode): save = 'lastResoult' name = save data = recalls, precisions, labels, avgPreScore plt.savefig('./figs/' + name + '.png', dpi=300) dirr = './figs/' + name + '/' if not os.path.isdir(dirr): os.mkdir(dirr) plt.savefig(dirr + name + '.svg') saveData(data, dirr + name + '.pickle') plt.show()
def findBestPictureWithMethod(): d = getPrCurve(allMethods, 10) #d[3]['img']['0.jpg']['MEAN'].keys() d = d[3]['img'] aucs = { name: {method: d[name][method]['auc'] for method in d[name]} for name in d } saveData(aucs, 'aucs') def sortAucByMethod(method='ME2'): l = [(name, aucs[name][method]) for name in aucs] l.sort(key=lambda x: x[1]) return l
def saveImgData(imgName, methods): ''' save data to LABEL_DATA_DIR return default method`s AUC ''' if isinstance(imgName, int): imgName = IMG_NAME_LIST[imgName] imgGt = io.imread(IMG_DIR + imgName[:-3] + 'png') / 255. coarseDic = getCoarseDic(imgName, methods, COARSE_DIR) data = {} data['name'] = imgName data['method'] = {} for method, refindImg in coarseDic.items(): data['method'][method] = getAucAndPr(imgGt, refindImg, method) dataName = LABEL_DATA_DIR + imgName[:-3] + 'data' AUC_METHOD = "DRFI" data['aucMethod'] = AUC_METHOD data['auc'] = data['method'][AUC_METHOD][0] saveData(data, dataName) return data['auc']
print("Saving data...") # Save spikes # tools.saveData(Simulation_params["experiment_id"],filename,".spikes",all_spikes) # Save connection matrix # tools.saveData(Simulation_params["experiment_id"],filename,".connections",connection_matrix) # Save membrane potentials # if Simulation_params["computeMP"]: # tools.saveData(Simulation_params["experiment_id"],filename,".MP_exc",potentials[0]) # tools.saveData(Simulation_params["experiment_id"],filename,".MP_inh",potentials[1]) # Save AMPA and GABA currents if Simulation_params["decimate"]: tools.saveData(Simulation_params["experiment_id"], filename, ".AMPA", tools.decimate(AMPA_current, 10)) tools.saveData(Simulation_params["experiment_id"], filename, ".GABA", tools.decimate(GABA_current, 10)) else: tools.saveData(Simulation_params["experiment_id"], filename, ".AMPA", AMPA_current) tools.saveData(Simulation_params["experiment_id"], filename, ".GABA", GABA_current) # # Normalize LFPs # # Discard first 500 ms for comp. mean and s. deviation # start_time_pos = int(500.0/Simulation_params["simstep"])
if st_con['source'] in pop_ex: connection_matrix[ind].append( pop_ex.index(st_con['source'])) if st_con['source'] in pop_in: connection_matrix[ind].append(pop_in.index(st_con['source'])+\ len(pop_ex)) # Add connections from external inputs for j in range(len(pop_parrot_th)): connection_matrix[j].append(j + len(pop_ex) + len(pop_in)) connection_matrix[j].append(j + len(pop_ex) + len(pop_in) + len(pop_parrot_th)) print("Saving data...") # Save spikes tools.saveData(Simulation_params["experiment_id"], filename, ".spikes", all_spikes) # Save connection matrix tools.saveData(Simulation_params["experiment_id"], filename, ".connections", connection_matrix) # Save membrane potentials if Simulation_params["computeMP"]: tools.saveData(Simulation_params["experiment_id"], filename, ".MP_exc", potentials[0]) tools.saveData(Simulation_params["experiment_id"], filename, ".MP_inh", potentials[1]) # Save AMPA and GABA currents if Simulation_params["decimate"]: tools.saveData(Simulation_params["experiment_id"], filename,
len(cluster_2_rate_1[0]) / 100000)) print("Rate 2 sp/s: %s, %s, %s" % (len(cluster_0_rate_2[0]) / 100000, len(cluster_1_rate_2[0]) / 100000, len(cluster_2_rate_2[0]) / 100000)) print("mean(g) = %s,%s,%s" % (np.mean(g_cluster_0), np.mean(g_cluster_1), np.mean(g_cluster_2))) ####################################################################### # Save data # os.mkdir('../results/merged_files') # A) 1.5 sp/s filename = 'trial_' + str(0) + '_rate_' + str(1.5) + '_gex_' + str( 1.78289473684) + '_gin_' + str(1.0) # AMPA and GABA tools.saveData("merged_files", filename, ".AMPA", cluster_0_rate_1[0]) tools.saveData("merged_files", filename, ".GABA", cluster_0_rate_1[1]) # Save time array tools.saveData("merged_files", filename, ".times", t_sim) # Save time step tools.saveData("merged_files", filename, ".dt", simstep) filename = 'trial_' + str(0) + '_rate_' + str(1.5) + '_gex_' + str( 1.20394736842) + '_gin_' + str(1.0) # AMPA and GABA tools.saveData("merged_files", filename, ".AMPA", cluster_1_rate_1[0]) tools.saveData("merged_files", filename, ".GABA", cluster_1_rate_1[1]) # Save time array tools.saveData("merged_files", filename, ".times", t_sim) # Save time step tools.saveData("merged_files", filename, ".dt", simstep)
kurtosis = computeKurtosisCustom(vel) a2 = computeExcessKurtosis_a2(kurtosis, 2) if verbose_temperature == True: print('Temperature: '+'{:.3f}'.format(meanTemperature)) #print('{:.3f}'.format(a2)) # Saving temperature and a2 data file_t.write('{0:10.6f} {1:10.4f}\n'.format(abs_time, meanTemperature)) file_a2.write('{0:10.6f} {1:10.4f}\n'.format(abs_time, a2)) if verbose_absTime == True: print('Contador de tiempo absoluto: ', str(abs_time)) # We save positions and velocities data after current collision saveData(c, data_folder, n_particles, pos, vel) p = "{:.2f}".format(100*(c/n_collisions)) + " %" # Percent completed if verbose_percent == True: print(p) if verbose_saveData == True: print('Saving file, collision nº: '+str(c+1)+' / '+str(n_collisions)) if verbose_debug == True: print(' ') print('COLLISION Nº: '+str(c)) print('Event list head:') print(events.eventTimesList.iloc[0:1]) if dt==0:
def saveKs(self, npz_filename): saveData(npz_filename, tuneX=self.tuneX, tuneY=self.tuneY, k0=self.k0, k1=self.k1, b1=self.b1)
def saveCubes(self, npz_cubefile): saveData(npz_cubefile, **self.cubes)