예제 #1
0
 def __init__(self, config, logger, dataset):
     self._config = config
     self._logger = logger
     self._float = prec.global_policy().compute_dtype
     self._should_log = tools.Every(config.log_every)
     self._should_train = tools.Every(config.train_every)
     self._should_pretrain = tools.Once()
     self._should_reset = tools.Every(config.reset_every)
     self._should_expl = tools.Until(
         int(config.expl_until / config.action_repeat))
     self._metrics = collections.defaultdict(tf.metrics.Mean)
     with tf.device('cpu:0'):
         self._step = tf.Variable(count_steps(config.traindir),
                                  dtype=tf.int64)
     # Schedules.
     config.actor_entropy = (
         lambda x=config.actor_entropy: tools.schedule(x, self._step))
     config.actor_state_entropy = (
         lambda x=config.actor_state_entropy: tools.schedule(x, self._step))
     config.imag_gradient_mix = (
         lambda x=config.imag_gradient_mix: tools.schedule(x, self._step))
     self._dataset = iter(dataset)
     self._wm = models.WorldModel(self._step, config)
     self._task_behavior = models.ImagBehavior(config, self._wm,
                                               config.behavior_stop_grad)
     reward = lambda f, s, a: self._wm.heads['reward'](f).mode()
     self._expl_behavior = dict(
         greedy=lambda: self._task_behavior,
         random=lambda: expl.Random(config),
         plan2explore=lambda: expl.Plan2Explore(config, self._wm, reward),
     )[config.expl_behavior]()
     # Train step to initialize variables including optimizer statistics.
     self._train(next(self._dataset))
예제 #2
0
파일: models.py 프로젝트: mkemka/dreamerv2
 def train(self, data):
   data = self.preprocess(data)
   with tf.GradientTape() as model_tape:
     embed = self.encoder(data)
     post, prior = self.dynamics.observe(embed, data['action'])
     kl_balance = tools.schedule(self._config.kl_balance, self._step)
     kl_free = tools.schedule(self._config.kl_free, self._step)
     kl_scale = tools.schedule(self._config.kl_scale, self._step)
     kl_loss, kl_value = self.dynamics.kl_loss(
         post, prior, kl_balance, kl_free, kl_scale)
     feat = self.dynamics.get_feat(post)
     likes = {}
     for name, head in self.heads.items():
       grad_head = (name in self._config.grad_heads)
       inp = feat if grad_head else tf.stop_gradient(feat)
       pred = head(inp, tf.float32)
       like = pred.log_prob(tf.cast(data[name], tf.float32))
       likes[name] = tf.reduce_mean(like) * self._scales.get(name, 1.0)
     model_loss = kl_loss - sum(likes.values())
   model_parts = [self.encoder, self.dynamics] + list(self.heads.values())
   metrics = self._model_opt(model_tape, model_loss, model_parts)
   metrics.update({f'{name}_loss': -like for name, like in likes.items()})
   metrics['kl_balance'] = kl_balance
   metrics['kl_free'] = kl_free
   metrics['kl_scale'] = kl_scale
   metrics['kl'] = tf.reduce_mean(kl_value)
   metrics['prior_ent'] = self.dynamics.get_dist(prior).entropy()
   metrics['post_ent'] = self.dynamics.get_dist(post).entropy()
   return embed, post, feat, kl_value, metrics
예제 #3
0
    def __init__(self, env, model_maker, config, training=True):
        self.env = env

        # self.act_space = self.env.action_space

        self._c = config
        self._precision = config.precision
        self._float = prec.global_policy().compute_dtype

        # self.ob, _, _, _ = self.env.step(
        #     self.env._env.action_space.sample()
        # )  # whether it is discrete or not, 0 is proper
        self.ob = self.env.reset()
        self.state = None
        acts = self.env.action_space
        self.random_actor = tools.OneHotDist(tf.zeros_like(acts.low)[None])

        self._c.num_actions = acts.n if hasattr(acts, "n") else acts.shape[0]
        print("self._c.num_actions:", self._c.num_actions)
        # self.batch_size = 16
        self.batch_size = self._c.batch_size
        self.batch_length = (
            self._c.batch_length
        )  # when it is not model-based learning, consider it controling the replay buffer
        self.TD_size = 1  # no TD
        self.play_records = []

        self.advantage = True

        self.total_step = 1
        self.save_play_img = False
        self.RGB_array_list = []
        self.episode_reward = 0
        self.episode_step = 0  # to avoid devide by zero
        self.datadir = self._c.logdir / "episodes"

        self._writer = tf.summary.create_file_writer("./tf_log",
                                                     max_queue=1000,
                                                     flush_millis=20000)

        if training:
            self.prefill_and_make_dataset()
        else:
            pass

        with tf.device("cpu:1"):
            self._step = tf.Variable(count_steps(self.datadir), dtype=tf.int64)

        self._c.actor_entropy = lambda x=self._c.actor_entropy: tools.schedule(
            x, self._step)
        self._c.actor_state_entropy = (lambda x=self._c.actor_state_entropy:
                                       tools.schedule(x, self._step))
        self._c.imag_gradient_mix = lambda x=self._c.imag_gradient_mix: tools.schedule(
            x, self._step)
        self.model = model_maker(self.env, training, self._step, self._writer,
                                 self._c)