예제 #1
0
def get_path():
    """Return the local file path for this file.

    Returns:
      the filepath
    """
    return pipe(__file__, os.path.realpath, os.path.split, get(0))
예제 #2
0
  def diagnostic_yield(self, metric='completeness', cutoff=1,
                       superblock_ids=None, group_id=None, sample_ids=None):
    """Calculate diagnostic yield."""
    # extract column to filter on
    metric_column = getattr(BlockData, metric)

    # set up the base query for all blocks
    total_query = self.total_count(BlockData)

    if superblock_ids:
      # apply the superblock filter on the Block class level
      total_query = total_query.join(BlockData.parent)\
                               .filter(Block.superblock_id.in_(superblock_ids))

    # extend base query to include only passed blocks
    pass_query = total_query.filter(metric_column >= cutoff)

    # optionally limit query
    queries = [limit_query(query, group=group_id, samples=sample_ids)
               for query in (total_query, pass_query)]

    # group multiple queries by sample ID (first column)
    metrics = groupby(get(0), concat(queries))

    # iterate over all values, concat different query results, and keep
    # only the unique values (excluding second sample_id)
    combined = (unique(concat(values)) for values in itervalues(metrics))

    # calculate diagnostic yield by simple division
    for sample_id, group_id, total, covered in combined:
      yield sample_id, group_id, (covered / total)
예제 #3
0
    def add_column(self, variables: Union[List[Text], Text]) -> None:
        """
        Adds a column to the dataframe

        Paramaters:
            variable (Union[List[Text],Text]): What variable(s) to add
        """
        if type(variables) is not list:
            variables = [variables]

        for var in variables:
            try:
                assert var not in self.vars
            except AssertionError:
                raise ValueError(
                    "Cannot add column {0}: already in frame".format(var))
        self.vars += variables

        newcols = {
            var: lambda state: CP.PropsSI(var, self.xvar, state[
                self.xvar], self.yvar, state[self.yvar], self.fluid)
            for var in variables
        }
        buffer = {key: [] for key in newcols}

        for index, row in self.data.iterrows():
            buffer = itemmap(
                lambda tup:
                (tup[0], tup[1] + [apply(get(tup[0], newcols), row)]), buffer)
        for key in newcols:
            self.data[key] = pd.Series(buffer[key], index=self.data.index)
        self.make_units()
        self.make_meta()
예제 #4
0
def lookup_mac(mac):
    return _.pipe(
        requests.get(f'http://macvendors.co/api/{mac}'),
        __.maybe_json(default={}),
        _.get('result', default={}),
        lambda d: {'mac': mac, 'info': d},
    )
예제 #5
0
def get_service_step(service_recipe):
    """
    Get step timedelta: The smaller duration of service_recipe's periods.
    """
    def diff(start, end):
        return end - start
    res_delta_diffs = compose(map(lambda p: diff(*p)), get('delta_periods'))
    return compose(min, map(min), map(res_delta_diffs))(service_recipe)
예제 #6
0
 def remove_indexes(iterable: Iterable, indexes: List[int]) -> Iterable:
     return pipe(
         iterable,
         add_index,
         filter(decorate_unpack(lambda i, _: i not in indexes)),
         map(get(1)),
         list,
     )
def _county_fips_name(fips):
    return pipe(
        Granularity.COUNTY, geo_data, curried.get("features"),
        curry(filter, lambda region: region["id"] == fips),
        excepts(
            StopIteration,
            lambda x: pipe(x, first, curried.get_in(["properties", "NAME"])),
            lambda _: None))
예제 #8
0
def hist(hist_function, *, options={}, **interact_params):
    """
    Generates an interactive histogram that allows users to change the
    parameters of the input hist_function.

    Args:
        hist_function (Array | (*args -> Array int | Array float)):
            Function that takes in parameters to interact with and returns an
            array of numbers. These numbers will be plotted in the resulting
            histogram.

    Kwargs:
        {options}

        interact_params (dict): Keyword arguments in the same format as
            `ipywidgets.interact`. One argument is required for each argument
            of `hist_function`.

    Returns:
        None

    >>> def gen_random(n_points):
    ...     return np.random.normal(size=n_points)
    >>> hist(gen_random, n_points=(0, 1000, 10))
    interactive(...)
    """
    params = {
        'mark': {
            'sample': _array_or_placeholder(hist_function),
            'bins': tz.get('bins'),
            'normalized': tz.get('normalized'),
            'scales': (
                lambda opts: {'sample': opts['x_sc'], 'count': opts['y_sc']}
            ),
        },
    }

    hist, fig = _create_plot(mark=bq.Hist, options=options, params=params)

    def wrapped(**interact_params):
        hist.sample = util.call_if_needed(hist_function, interact_params)

    display_widgets = widgets.interactive(wrapped, **interact_params)
    display(display_widgets)
    display(fig)
예제 #9
0
def tom_base_state_to_base_state(tom_base_state):
    tom_base_state = valmap(compose(np.copy, np.flip), tom_base_state)
    q, T, z, rho = get(["qv", "T", "z", "rho"], tom_base_state)
    return {
        "QT": q * 1000.0,
        "SLI": T + grav / cp * z,
        "height_center": z,
        "density": rho
    }
예제 #10
0
 def update(self, output):
     target, image_dets, batch_size = get(["target", "preds", "batch_size"],
                                          output)
     image_gts = target[0]
     for dets, gts in zip(image_dets, image_gts):
         image_id = gts[0]['image_id']
         for d in dets:
             d = {**d, 'image_id': image_id}
             self.res.append(d)
예제 #11
0
def render_tabular(api, options=None):
    """Entry point for the tabular reporter interface."""
    # determine separator
    separator = options.get('report.separator', '\t')
    human = options.get('report.human')
    panel = options.get('report.panel')
    samples = options.get('report.samples')
    group = options.get('report.group')

    # read gene panel file if it has been set
    if panel:
        superblock_ids = [line.rstrip() for line in panel]
    else:
        superblock_ids = None

    # get sample ID, group and cutoff from metadata
    sample_query = limit_query(api.samples(), group=group, samples=samples)
    metadata = ((sample.id, sample.group_id, sample.cutoff)
                for sample in sample_query)

    # get the data
    base_query = limit_query(
        api.average_metrics(superblock_ids=superblock_ids),
        group=group,
        samples=samples)

    queries = [
        metadata, base_query,
        api.diagnostic_yield(superblock_ids=superblock_ids,
                             group_id=group,
                             sample_ids=samples),
        api.sex_checker(group_id=group, sample_ids=samples)
    ]

    # group multiple queries by sample ID (first column)
    key_metrics = groupby(get(0), concat(queries))

    # get the column names dynamically from the query
    headers = concatv(['sample_id', 'group_id', 'cutoff'],
                      (column['name']
                       for column in base_query.column_descriptions),
                      ['diagnostic yield', 'gender'])

    unique_headers = unique(headers)

    # iterate over all values, concat different query results, and keep
    # only the unique values (excluding second sample_id)
    data = (unique(concat(values)) for values in itervalues(key_metrics))

    if human:
        # export key_metrics in a more human friendly format
        return tabulate(data, unique_headers)

    # yield headers
    return '\n'.join(
        cons('#' + separator.join(unique_headers),
             stringify_list(data, separator=separator)))
예제 #12
0
파일: graph.py 프로젝트: 0xnurl/gamla
def has_cycle(graph):
    return toolz.pipe(
        graph,
        dict.keys,
        curried.map(
            _has_cycle(frozenset(), curried.get(seq=graph, default=()),
                       set())),
        any,
    )
 def load_state_dict(self, state_dict):
     epochs, model, optimizer, lr_scheduler, metric_history = get(
         ["epochs", "model", "optimizer", "lr_scheduler", "metric_history"],
         state_dict)
     self._epochs = epochs
     self.model.load_state_dict(model)
     self.optimizer.load_state_dict(optimizer)
     if self.lr_scheduler and lr_scheduler:
         self.lr_scheduler.load_state_dict(lr_scheduler)
     self.metric_history = metric_history
예제 #14
0
 def output_transform(self, output):
     if self.mix:
         if isinstance(self.mix, Mixup) or (isinstance(self.mix, CutMix)
                                            and self.mix.lam):
             y_pred, y_true, batch_size = get(
                 ["y_pred", "y_true", "batch_size"], output)
             y_a, y_b = y_true
             y_pred = torch.topk(y_pred, k=2, dim=1)[1]
             y_a_p = y_pred[:, 0]
             y_b_p = y_pred[:, 1]
             if self.mix.lam < 0.5:
                 y_a_p, y_b_p = y_b_p, y_a_p
             num_corrects = (
                 self.mix.lam * y_a_p.eq(y_a).sum().cpu().float() +
                 (1 - self.mix.lam) * y_b_p.eq(y_b).sum().cpu().float())
             acc = num_corrects / batch_size
             return acc, batch_size
     y_pred, y_true = get(["y_pred", "y_true"], output)
     return accuracy(y_true, y_pred)
예제 #15
0
def dict_configuration_to_params(configuration):
    parameters = pipeline(
        configuration,
        [
            instantiate_configuration,
            get('pipeline'),
            configuration_to_params,
        ],
    )
    return parameters
예제 #16
0
def groupby_count(func):
    """Group the simulation data based on a function.

    Args:
      func: function to group by

    Returns:
      grouped data
    """
    return pipe(get_yaml_data(), map(get(1)), groupby(func), valmap(count))
예제 #17
0
 def concat(key):
     return pipe(
         lambda x: func(np.array(x)),
         delayed,
         lambda x: fmap(lambda y: (y.shape, x(y)), data.blocks),
         fmap(lambda x: (x[0], get(key, x[1]))),
         fmap(lambda x: from_delayed(key, x[0], x[1])),
         list,
         lambda x: da.concatenate(x, axis=0),
     )
예제 #18
0
 def _common(self, Z, y):
     scale = Scaler(Z)
     transform = compose(prepend_x0, Scaler.normalize)
     X = transform(scale)
     data = zip(X, y)
     h_theta0 = [0.] * len(X[0])
     coeff = compose(scale.denormalize, get(0),
                     lin_reg(J, gradJ, h_theta0, it_max=2000))
     h_thetad = coeff(data)
     return h_thetad
예제 #19
0
def find_yaml_file(path):
    """Find a YAML file in the path

    Args:
      path: find a YAML file on the path

    Returns:
      the path to the YAML file
    """
    return pipe(path, glob_all_files_27,
                filter(lambda x: tail(5, x) == '.yaml'), list, get(0))
예제 #20
0
 def _common(self, Z, y):
     scale = Scaler(Z)
     transform = compose(prepend_x0, Scaler.normalize)
     X = transform(scale)
     data = zip(X, y)
     h_theta0 = [0.] * len(X[0])
     coeff = compose(scale.denormalize, 
                     get(0), 
                     lin_reg(J, gradJ, h_theta0, it_max=2000))
     h_thetad = coeff(data)
     return h_thetad
예제 #21
0
def test_combined():
    """Run a combined test
    """
    assert pipe(
        get_params(),
        assoc(key="fipy_iter", value=2),
        run_main,
        get("eta"),
        np.array,
        np.sum,
        lambda x: np.allclose(x, 1515.784),
    )
예제 #22
0
def render_tabular(api, options=None):
  """Entry point for the tabular reporter interface."""
  # determine separator
  separator = options.get('report.separator', '\t')
  human = options.get('report.human')
  panel = options.get('report.panel')
  samples = options.get('report.samples')
  group = options.get('report.group')

  # read gene panel file if it has been set
  if panel:
    superblock_ids = [line.rstrip() for line in panel]
  else:
    superblock_ids = None

  # get sample ID, group and cutoff from metadata
  sample_query = limit_query(api.samples(), group=group, samples=samples)
  metadata = ((sample.id, sample.group_id, sample.cutoff)
              for sample in sample_query)

  # get the data
  base_query = limit_query(api.average_metrics(superblock_ids=superblock_ids),
                           group=group,
                           samples=samples)

  queries = [metadata,
             base_query,
             api.diagnostic_yield(superblock_ids=superblock_ids,
                                  group_id=group, sample_ids=samples),
             api.sex_checker(group_id=group, sample_ids=samples)]

  # group multiple queries by sample ID (first column)
  key_metrics = groupby(get(0), concat(queries))

  # get the column names dynamically from the query
  headers = concatv(['sample_id', 'group_id', 'cutoff'],
                    (column['name'] for column
                     in base_query.column_descriptions),
                    ['diagnostic yield', 'gender'])

  unique_headers = unique(headers)

  # iterate over all values, concat different query results, and keep
  # only the unique values (excluding second sample_id)
  data = (unique(concat(values)) for values in itervalues(key_metrics))

  if human:
    # export key_metrics in a more human friendly format
    return tabulate(data, unique_headers)

  # yield headers
  return '\n'.join(cons('#' + separator.join(unique_headers),
                        stringify_list(data, separator=separator)))
예제 #23
0
def comment_staticman(github_token, ci_data):
    """Sequence of functions to get data from github for staticman comment
    and then write the comment to github
    """
    return sequence(
        pr_url,
        requests_get(github_token),
        lambda x: x.json(),
        get("body"),
        archieml.loads,
        comment_staticman_(ci_data),
    )(ci_data)
예제 #24
0
 def from_tom_base_state(tom_base_state):
     """Return WaveEq from Tom's base state"""
     # TODO refactor this to an abstract factor (A)
     tom_base_state = valmap(compose(np.copy, np.flip), tom_base_state)
     q, T, z, rho = get(["qv", "T", "z", "rho"], tom_base_state)
     base_state = {
         "QT": q * 1000.0,
         "SLI": T + grav / cp * z,
         "height_center": z,
         "density": rho
     }
     return WaveEq(base_state)
예제 #25
0
def random_sample_crop(anns, size, min_iou, min_ar, max_ar, max_attemps=50):
    """
    Crop the given PIL Image to random size and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Parameters
    ----------
    anns : ``List[Dict]``
        Sequences of annotation of objects, containing `bbox` of [l, t, w, h].
    size : ``Sequence[int]``
        Size of the original image.
    min_iou : ``float``
        Minimal iou between the objects and the cropped image.
    min_ar : ``Number``
        Minimal aspect ratio.
    max_ar : ``Number``
        Maximum aspect ratio.
    max_attemps: ``int``
        Maximum attemps to try.
    """
    width, height = size
    bboxes = np.stack([ann['bbox'] for ann in anns])
    bboxes[:, 2:] += bboxes[:, :2]
    for _ in range(max_attemps):
        w = random.uniform(0.3 * width, width)
        h = random.uniform(0.3 * height, height)

        if h / w < min_ar or h / w > max_ar:
            continue

        l = random.uniform(0, width - w)
        t = random.uniform(0, height - h)
        r = l + w
        b = t + h

        patch = np.array([l, t, r, b])
        ious = iou_1m(patch, bboxes)
        if ious.min() < min_iou:
            continue

        centers = (bboxes[:, :2] + bboxes[:, 2:]) / 2.0
        mask = (l < centers[:, 0]) & (centers[:, 0] < r) & (
            t < centers[:, 1]) & (centers[:, 1] < b)

        if not mask.any():
            continue
        indices = np.nonzero(mask)[0].tolist()
        return get(indices, anns), l, t, w, h
    return None
예제 #26
0
파일: tools.py 프로젝트: wd15/extremefill2D
def get_path(file_):
    """Return the local file path for this file.

    Returns:
      the filepath
    """
    return pipe(
        file_,
        os.path.realpath,
        os.path.split,
        get(0)
    )
예제 #27
0
def compare_metrics_in_table(
    metrics_for_methods: Dict[str, ClassificationMetricsWithStatistics],
    include: Tuple[str, ...] = ('balanced_accuracy', 'roc_auc', 'recall', 'fpr'),
    format_method_name: Callable[[str], str] = identity,
    include_ci_for: Set[str] = None,
    include_delta: bool = False,
) -> List[List]:

    if include_ci_for is None:
        include_ci_for = include

    def get_line(
        method: str, metrics: Union[ClassificationMetrics, ClassificationMetricsWithStatistics]
    ):
        return [
            format_method_name(method),
            *pipe(
                [
                    [
                        metrics[metric].mean,
                        (
                            metrics[metric].mean -
                            get_max_metric_value(metric, metrics_for_methods.values())
                        ) if include_delta else None,
                    ] + ([format_ci(metrics[metric].ci)] if metric in include_ci_for else [])
                    for metric in include
                ],
                flatten,
                compact,
            ),
        ]

    lines = pipe(
        [get_line(method, metrics) for method, metrics in metrics_for_methods.items()],
        partial(sorted, key=get(1), reverse=True),
    )

    return format_structure(
        format_decimal,
        [
            [
                '', *flatten(
                    map(
                        lambda metric:
                        [format_metric_short(metric), *(['Δ'] if include_delta else [])] +
                        (['95% CI'] if metric in include_ci_for else []), include
                    )
                )
            ],
            *lines,
        ],
    )
예제 #28
0
 def __init__(self,
              anchors,
              pos_thresh=0.5,
              neg_thresh=None,
              get_label=get('category_id'),
              debug=False):
     self.anchors_xywh = flatten(anchors)
     self.anchors_ltrb = BBox.convert(self.anchors_xywh, BBox.XYWH,
                                      BBox.LTRB)
     self.pos_thresh = pos_thresh
     self.neg_thresh = neg_thresh
     self.get_label = get_label
     self.debug = debug
예제 #29
0
def compare_and_format_results(
    y_true: Series,
    results_for_methods: Dict[str, List[ModelCVResult]],
    include: Tuple[str] = ('balanced_accuracy', 'roc_auc', 'recall', 'fpr',
                           'f1', 'average_precision'),
) -> str:
    metrics_for_methods = valmap(
        lambda r: compute_classification_metrics_from_results_with_statistics(
            y_true, r), results_for_methods)

    def get_line(method: str, metrics: ClassificationMetricsWithStatistics):
        return [
            format_method(method),
            *[metrics[metric].mean for metric in include]
        ]

    lines = sorted(
        [
            get_line(method, metrics)
            for method, metrics in metrics_for_methods.items()
        ],
        key=get(1),
        reverse=True,
    )

    max_by_column = [
        None if index == 0 else max(pluck(index, lines))
        for index in range(len(include) + 1)
    ]

    lines_with_differences = [
        list(
            flatten([
                item if item_index == 0 else
                [item, item - max_by_column[item_index]]
                for item_index, item in enumerate(line)
            ])) for line in lines
    ]

    return tabulate_formatted(
        format_structure(
            format_decimal,
            [
                [
                    '', *flatten(
                        map(lambda metric: [format_metric_short(metric), ''],
                            include))
                ],
                *lines_with_differences,
            ],
        ))
예제 #30
0
    def get_data_frame(document_id: str,
                       raw: bool = False,
                       auth_args: Auth = Auth.shared()):
        auth = Auth(auth_args)
        document = Document.get(document_id, auth_args=auth_args)

        file_id = pipe(
            document.get("content", []),
            c.filter(lambda c: c.get("format", {}).get("code") ==
                     "ocr-text-file-id"),
            c.first,
            c.get("attachment", default={}),
            c.get("url"),
            iffy(isa(str), lambda url: url.split("/")[-1]),
        )

        if file_id is None:
            raise ValueError(
                f"No block file found for document: '{document_id}'")

        files = Files(auth.session())
        filename = files.download(file_id, "/tmp/")

        frame = pd.read_json(filename, lines=True)
        os.remove(filename)

        if raw or len(frame) == 0:
            return frame

        return Block.sort(
            frame.drop(["Geometry"], axis=1).join(
                pd.json_normalize(frame.Geometry)).pipe(
                    partial(
                        Frame.expand,
                        custom_columns=[
                            Frame.codeable_like_column_expander("Polygon")
                        ],
                    )).set_index("Id"))
예제 #31
0
def main():
    doc = """dotrunner
        Usage:
        dotrunner <root> [--dry-run]
        dotrunner --version

        Options:
        -d --dry-run     Perform dry run (don't apply changes to filesystem)
        --version        Show version.
        -h --help        Show this screen.
        """
    args = docopt(doc, version='dotrunner {}'.format(VERSION))
    (root, dry_run) = get(['<root>', '--dry-run'])(args)
    IO = DryRunIO if dry_run else FileSystemIO
    run(root, IO())
예제 #32
0
 def load_state_dict(self, state_dict):
     epochs, model, optimizer, lr_scheduler, amp_state, metric_history = get(
         [
             "epochs", "model", "optimizer", "lr_scheduler", "amp",
             "metric_history"
         ], state_dict)
     self._epochs = epochs
     self.model.load_state_dict(model)
     self.optimizer.load_state_dict(optimizer)
     if self.lr_scheduler and lr_scheduler:
         self.lr_scheduler.load_state_dict(lr_scheduler)
     if self.fp16 and amp_state is not None:
         from apex import amp
         amp.load_state_dict(amp_state)
     self.metric_history = metric_history
예제 #33
0
def main():
    doc = """dotlinker
        Usage:
        dotlinker <from> <to> [--dry-run]
        dotlinker --version

        Options:
        -d --dry-run     Perform dry run (don't apply changes to filesystem)
        --version        Show version.
        -h --help        Show this screen.
        """
    args = docopt(doc, version="dotlinker 0.1.2")
    (source, target, dry_run) = get(['<from>', '<to>', '--dry-run'])(args)
    IO = DryRunIO if dry_run else FileSystemIO
    link(source, target, IO())
예제 #34
0
    def output_transform(self, output):
        targets, preds, batch_size = get(["target", "preds", "batch_size"],
                                         output)
        gts = targets[0]
        if isinstance(gts[0], Image.Image):
            gts = [np.array(img) for img in gts]
        elif torch.is_tensor(gts):
            gts = gts.cpu().byte().numpy()

        v = np.mean([
            mean_iou(preds[i], gts[i], self.num_classes)
            for i in range(batch_size)
        ])

        return v, batch_size
예제 #35
0
    def output_transform(self, output):
        y_true, y_pred, batch_size = get(
            ["y_true", "y_pred", "batch_size"], output)

        y_pred = y_pred.argmax(dim=1)

        accs = []
        for i in range(batch_size):
            y = y_true[i]
            p = y_pred[i]
            tp = (y == p).sum()
            if self.ignore_index is not None:
                tp += (y == self.ignore_index).sum()
            accs.append(tp.cpu().item() / np.prod(y.shape))
        acc = np.mean(accs)
        return acc, batch_size
예제 #36
0
파일: spark.py 프로젝트: aterrel/blaze
def compute(t, lhs, rhs):
    lhs = compute(t.lhs, lhs)
    rhs = compute(t.rhs, rhs)

    col_idx_lhs = t.lhs.columns.index(t.on_left)
    col_idx_rhs = t.rhs.columns.index(t.on_right)

    lhs = lhs.keyBy(lambda x: x[col_idx_lhs])
    rhs = rhs.keyBy(lambda x: x[col_idx_rhs])

    # Calculate the indices we want in the joined table
    columns = t.lhs.columns + t.rhs.columns
    repeated_index = len(columns) - columns[::-1].index(t.on_right) - 1
    wanted = list(range(len(columns)))
    wanted.pop(repeated_index)
    getter = get(wanted)
    reassemble = lambda x: getter(x[1][0] + x[1][1])

    return lhs.join(rhs).map(reassemble)
예제 #37
0
파일: tools.py 프로젝트: wd15/extremefill2D
def get_by_uuid(uuid, path='.'):
    """Get a Treant by short ID

    Args:
      uuid: a portion of the uuid
      path: the search path for Treants

    Returns:
      a Treant

    """
    return pipe(
        path,
        dtr.discover,
        list,
        filter(lambda x: uuid in x.uuid),
        list,
        get(0, default=None)
    )
예제 #38
0
파일: spark.py 프로젝트: B-Rich/blaze
def compute(t, lhs, rhs):
    lhs = compute(t.lhs, lhs)
    rhs = compute(t.rhs, rhs)

    on_left = rowfunc(t.lhs[t.on_left])
    on_right = rowfunc(t.rhs[t.on_right])

    lhs = lhs.keyBy(on_left)
    rhs = rhs.keyBy(on_right)

    # Calculate the indices we want in the joined table
    columns = t.lhs.columns + t.rhs.columns
    repeated_index = set([len(t.lhs.columns) + t.rhs.columns.index(col)
            for col in listpack(t.on_right)])

    wanted = [i for i in range(len(columns)) if i not in repeated_index]

    getter = get(wanted)
    reassemble = lambda x: getter(x[1][0] + x[1][1])

    return lhs.join(rhs).map(reassemble)
예제 #39
0
파일: sparksql.py 프로젝트: MoherX/odo
def sparksql_dataframe_to_list(df, dshape=None, **kwargs):
    result = df.collect()
    if (dshape is not None and iscollection(dshape) and
            not isrecord(dshape.measure)):
        return list(map(get(0), result))
    return result
예제 #40
0
파일: test_curry.py 프로젝트: 183amir/toolz
def test_get_curried():
    first = get(0)
    for p in pairs:
        first(p)
예제 #41
0
def get_service_duration(service_recipe):
    """
    Get duration timedelta: The global duration of service_recipe.
    """
    res_delta_ends = compose(last, lambda p: zip(*p), get('delta_periods'))
    return compose(max, map(max), map(res_delta_ends))(service_recipe)
예제 #42
0
def uppercase_first_letter_compose(word):

    comp = functoolz.compose(get(0), lambda c: c.upper())
    return comp(word)
예제 #43
0
파일: test_mongo.py 프로젝트: holdenk/blaze
def test_into():
    with collection([]) as coll:
        key = get(['name', 'amount'])
        assert set(into([], into(coll, bank), columns=['name', 'amount'])) ==\
                set([('Alice', 100), ('Alice', 200), ('Bob', 100),
                     ('Bob', 200), ('Bob', 300)])
예제 #44
0
def get_gifts(people):
    # ``pipe(data, f, g, h)`` is equivalent to ``h(g(f(data)))`
    return pipe(people,
        filter(lambda v: v['age'] < 18 and v['well_behaved']),
        mapcat(get(['name'])),
        list)