def load_subscription_details(self): all_subscriptions = frappe.db.sql( """ SELECT si.outstanding_amount AS amount, si.status AS status, gs.to_date AS end_date FROM `tabGym Subscription` AS gs, `tabSales Invoice` AS si WHERE gs.docstatus = 1 AND gs.member = '{member}' AND gs.reference_invoice = si.name ORDER BY gs.from_date DESC """.format(member=self.name), as_dict=True, ) unpaid_subscriptions = filter(lambda x: x.get('status') != 'Paid', all_subscriptions) outstanding = reduce(operator.add, pluck('amount', unpaid_subscriptions), 0) self.set_onload( 'subscription_details', { 'total_invoices': count(all_subscriptions), 'unpaid_invoices': count(unpaid_subscriptions), 'outstanding': outstanding, }) self.set_onload('subscriptions', get_currents(self.name))
def load_subscription_details(self): all_subscriptions = frappe.db.sql( """ SELECT si.outstanding_amount AS amount, si.status AS status, gs.to_date AS end_date FROM `tabGym Subscription` AS gs, `tabSales Invoice` AS si WHERE gs.docstatus = 1 AND gs.member = '{member}' AND gs.reference_invoice = si.name ORDER BY gs.from_date DESC """.format(member=self.name), as_dict=True, ) unpaid_subscriptions = filter(lambda x: x.get("status") != "Paid", all_subscriptions) outstanding = reduce(operator.add, pluck("amount", unpaid_subscriptions), 0) self.set_onload( "subscription_details", { "total_invoices": count(all_subscriptions), "unpaid_invoices": count(unpaid_subscriptions), "outstanding": outstanding, }, ) subscriptions = get_currents(self.name) self.set_onload("subscriptions", subscriptions) self.set_onload("last_trainer", _get_trainer(self.name, subscriptions))
def __init__( self, frame: pd.DataFrame, window: int = 10, window_two: int = 3, is_fold: bool = False, x_label: List[str] = ["state"], y_label: List[str] = ["reward"] ): self.n = 0 self.is_fold = is_fold local_frame = frame.copy() np_conv = lambda x: x.to_numpy() swindows = sliding_window(window) func = lambda x: pipe(x, np_conv, swindows) stay = stack_array(window_two) _slice_target = slice_target(window, window_two) self.x_axis = pipe( local_frame[x_label], np_conv, map(compress_row), swindows, map(compose(concat_tuple)), map(stay) ) self.y_axis = pipe( frame[y_label], func, map(lambda x: torch.tensor(x).view(-1)), map(log_el), map(_slice_target) ) self.count = toolz.count(self.copy()[0]) self.zip_list = None
def test_chunks(): x = np.array([(int(i), float(i)) for i in range(100)], dtype=[('a', np.int32), ('b', np.float32)]) b = bcolz.ctable(x) assert count(chunks(b, chunksize=10)) == 10 assert (next(chunks(b, chunksize=10)) == x[:10]).all()
def test_mutable_ecs(num_original_entities: int) -> None: ecdb: EntityComponentDatabase = create_ecdb() # Add a few entities for _ in range(num_original_entities): ecdb, _ = add_entity(ecdb=ecdb, components=(PositionComponent(y_axis=0, x_axis=0), VelocityComponent(y_axis=0, x_axis=0))) systems: Systems[SystemUnion] = create_systems() systems = add_system(systems=systems, priority=0, system=MovementSystem()) systems = add_system(systems=systems, priority=1, system=RemoveRandomEntitySystem()) loop_index = 0 while True: ecdb = process_systems(ecdb=ecdb, systems=systems, process_system=process_system, process_action=process_action) assert len(ecdb) == num_original_entities - loop_index - 1 if count(query(ecdb=ecdb)) == 0: break loop_index += 1
def test_startService(self): """ L{FusionIndexServiceMaker} creates a multiservice with the store and web services hooked up. """ maker = FusionIndexServiceMaker() service = maker.makeService({ 'db': self.mktemp(), 'port': 'tcp:0', }) self.assertEqual(count(service), 2)
def linecount(fn): """ Count the number of lines in a textfile We need this to build the graph for read_csv. This is much faster than actually parsing the file, but still costly. """ extension = os.path.splitext(fn)[-1].lstrip('.') myopen = opens.get(extension, open) f = myopen(os.path.expanduser(fn)) result = toolz.count(f) f.close() return result
def onload(self): all_fees = frappe.db.sql( """ SELECT si.rounded_total AS amount, fee.status AS status, fee.to_date AS end_date FROM `tabGym Fee` AS fee, `tabSales Invoice` AS si WHERE fee.docstatus = 1 AND fee.membership = '{membership}' AND fee.reference_invoice = si.name ORDER BY fee.to_date DESC """.format(membership=self.name), as_dict=True, ) unpaid_fees = filter(lambda x: x.get('status') == 'Unpaid', all_fees) self.set_onload('total_invoices', count(all_fees)) self.set_onload('unpaid_invoices', count(unpaid_fees)) outstanding = reduce(operator.add, pluck('amount', unpaid_fees), 0) self.set_onload('outstanding', outstanding) paid_fees = filter(lambda x: x.get('status') == 'Paid', all_fees) end_date = get('end_date', first(paid_fees)) if paid_fees else None self.set_onload('end_date', end_date)
def compute_up_1d(t, seq, **kwargs): return toolz.count(filter(None, seq))
def compute_up_1d(expr, seq, **kwargs): try: return len(seq) except TypeError: return toolz.count(seq)
c1, c2, c3 = sns.palettes.color_palette('colorblind', 3) for r, c, rr, cc in zip(*[list(rbc4_short[i]) for i in ['row1', 'col1', 'row2', 'col2']]): plt.plot([c, cc], [r, rr], color=c1, marker=None) for r, c, rr, cc in zip(*[list(rbc4_mid[i]) for i in ['row1', 'col1', 'row2', 'col2']]): plt.plot([c, cc], [r, rr], color=c2, marker=None) for r, c, rr, cc in zip(*[list(rbc4_long[i]) for i in ['row1', 'col1', 'row2', 'col2']]): plt.plot([c, cc], [r, rr], color=c3, marker=None) rbcim3 = rbcim2[:1758] rbcim4 = filters.gaussian(rbcim3, sigma=3) rbcim_med = filters.median(rbcim4, morphology.disk(100 / scale)) rbcim5 = img_as_ubyte(rbcim4) > rbcim_med rbcskel = morphology.skeletonize(rbcim5) rbcskel_ids = np.zeros(rbcskel.shape, int) rbcskel_ids[rbcskel] = np.arange(1, np.sum(rbcskel) + 1) import skeleton as skelpy import networkx as nx import toolz as tz g = skelpy.skeleton_to_nx(rbcskel) g.number_of_nodes() tz.count(i for i in g.nodes_iter() if g.node[i]['type'] == 'junction') cc = max(nx.connected_component_subgraphs(g), key=len) n0, n1 = cc.nodes()[0], cc.nodes()[-1] print(nx.shortest_path_length(cc, n0, n1, weight='weight'))
def has_multiple_bases(expr): return toolz.count(find_immediate_parent_tables(expr)) > 1
def count_quorum(self, lvl: int) -> int: return count([q for q in self.level_quorum_count[lvl].values() if q])
def test_line_count_of_known_input(): "confirm all Lines read from basic input file" expected_entry_count = count(entries) found_entry_count = pipe(path, entries_from_path, count) assert expected_entry_count == found_entry_count
def __len__(self): """Returns the number of entries in the mapping""" return count(iter(self))
def __len__(self) -> int: return count(self.path.glob('[!_]*')) # type: ignore
import sys import itertools import toolz from gensim.models import word2vec data_file = sys.argv[1] sentences = [ s for s in word2vec.LineSentence(data_file) if toolz.count(toolz.unique(s)) >= 2 ] cmb = toolz.frequencies( toolz.mapcat(lambda s: itertools.combinations(sorted(toolz.unique(s)), 2), sentences)) for (k1, k2), v in sorted(cmb.items(), key=lambda x: -x[1]): print(f"item1 = {k1}, item2 = {k2}, freq = {v}")
def count_active_neighbours(self, point: Point) -> int: # Includes self, if active return count((neighbour for neighbour in self.neighbours([point]) if neighbour in self.data))
def __len__(self): return count(iter(self))