def sa(): import topo from topo.command.analysis import save_plotgroup from param import normalize_path import contrib.jacommands import contrib.surround_analysis_new_cleaned from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand, FeatureCurveCommand reload(contrib.surround_analysis_new_cleaned) s = normalize_path.prefix exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ from topo.analysis.featureresponses import FeatureResponses, PatternPresenter, FeatureMaps PatternPresenter.duration = 4.0 normalize_path.prefix = s SinusoidalMeasureResponseCommand.scale = __main__.__dict__.get( "analysis_scale", 1.0) SinusoidalMeasureResponseCommand.frequencies = [2.4] if __main__.__dict__.get("Max", False): from topo.misc.distribution import DSF_MaxValue preference_fn = DSF_MaxValue(value_scale=(0., 1. / numpy.pi), selectivity_scale=(0., 17.0)) topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1Complex"], preference_fn=preference_fn)() else: save_plotgroup("Orientation Preference and Complexity") contrib.surround_analysis_new_cleaned.surround_analysis( "V1Complex").run_lhi_informed_analysis( max_curves=__main__.__dict__.get("max_curves", 20), center_size=__main__.__dict__.get("center_size", 20), index=__main__.__dict__.get("index", 0))
def __call__(self,times=None,**kwargs): # if analysis_group('b'): # return None if self.pickle: or_pkl = open(param.normalize_path('ormap_{time}.pkl'.format(time=topo.sim.time())),'wb') pkl_data = {} for f in self.frequencies: save_plotgroup("Orientation Preference",use_cached_results=False,saver_params={'filename_suffix':'_{0}'.format(f)}, pre_plot_hooks=[measure_sine_pref.instance(frequencies=[f],num_phase=self.num_phase,num_orientation=self.num_orientation, preference_fn=DSF_WeightedAverage(value_scale=(0., 1./math.pi)))]) if self.pickle: for sheet in self.sheets: im = topo.sim[sheet].sheet_views['OrientationPreference'].view()[0][0:-1,0:-1] try: polar_or = image.hue_to_polar(im) pwdata = analysisJL.polarmap_contours(polar_or) pws = analysisJL.identify_pinwheels(*pwdata) pwbitsofinformation = type('pwdata', (), dict(zip(['recontours', 'imcontours', 'intersections', 'pinwheels'] , pwdata+(pws,) ))) pw_results = analysisJL.pinwheel_analysis(im, len(pws), ignore_DC=False) pkl_data['OR_Analysis_{freq}_{sheet}'.format(freq = f,sheet=sheet)] = pw_results except: print "OR Pinwheel Analysis failed" or_sel = topo.sim[sheet].sheet_views['OrientationSelectivity'].view()[0] pkl_data['OrientationPreference_{freq}_{sheet}'.format(freq = f,sheet=sheet)] = im pkl_data['OrientationSelectivity_{freq}_{sheet}'.format(freq = f,sheet=sheet)] = or_sel if self.pickle: pickle.dump(pkl_data,or_pkl)
def __call__(self,times=None,**kwargs): if analysis_group('b'): return None save_plotgroup("Position Preference",use_cached_results=False, pre_plot_hooks=[measure_position_pref.instance(divisions=self.divisions, x_range=self.x_range, y_range=self.y_range, size=self.size,scale=self.scale)])
def test_orientation_preference_saving(self): save_plotgroup('Orientation Preference') self.exists("testplotfilesaver_000000.00_B_Orientation_Preference.png") self.exists( "testplotfilesaver_000000.00_B_Orientation_PreferenceAndSelectivity.png" ) self.exists( "testplotfilesaver_000000.00_B_Orientation_Selectivity.png") self.exists("testplotfilesaver_000000.00__Color_Key.png")
def collect_activity_statistics(): contrib.jacommands.activity_history = numpy.concatenate((contrib.jacommands.activity_history, topo.sim["V1"].activity.flatten()), axis=1) if(int(topo.sim.time()) == 10000): pylab.figure() pylab.hist(contrib.jacommands.activity_history, (numpy.arange(20.0) / 20.0)) pylab.savefig(str(topo.sim.time()) + 'activity_histogram.png') # measure_or_tuning_fullfield() # cyclic_tuning_curve_batch(filename="OrientationTC:V1:[0,0]",sheet=topo.sim["V1"],coords=[(0,0)],x_axis="orientation") save_plotgroup('Activity')
def projection_plotgroup(times=None,**kwargs): if analysis_group('b'): return None from topo.command.analysis import save_plotgroup projections = [('V1PV','PVLGNOnAfferent'),('V1PV','PVLGNOffAfferent'),('V1Exc','LGNOnAfferent'),('V1Exc','LGNOffAfferent'),('V1Exc','LateralExcitatory'),('V1Exc','V1PV2V1Exc'),('V1SOM','V1Exc2V1SOM'),('V1Exc','V1PV2V1Exc'),('V1','LGNOnAfferent'),('V1','LGNOffAfferent'),('V1PV','V1Exc2V1PV'),('V1','LateralInhibitory')] for proj in projections: try: save_plotgroup("Projection",projection=topo.sim[proj[0]].projections(proj[1])) except: print "{0} does not exist".format(proj)
def plotting_and_saving_analysis_fn(prefix=""): """For use with memuse_batch() to test snapshot and plotting memory usage.""" import topo from topo.command import save_snapshot from topo.command.analysis import measure_sine_pref,save_plotgroup print "%sMemuse at time %s: %s" % (prefix,topo.sim.timestr(),allsizes_mb()) measure_sine_pref() print "%sAfter measure_sine_pref: %s" % (prefix,allsizes_mb()) save_plotgroup("Orientation Preference") print "%sAfter save_plotgroup: %s" % (prefix,allsizes_mb()) save_snapshot("/tmp/tmp.typ") print "%sAfter save_snapshot: %s" % (prefix,allsizes_mb())
def t_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ print 'Called complex_analysis_function' import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand, FeatureCurveCommand import contrib.jacommands exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) print 'Build a list of all sheets worth measuring' f = lambda x: hasattr(x, 'measure_maps') and x.measure_maps measured_sheets = filter(f, topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() print 'Set potentially reasonable defaults; not necessarily useful' topo.command.analysis.coordinate = (0.0, 0.0) if input_sheets: topo.command.analysis.input_sheet_name = input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name = measured_sheets[0].name FeatureCurveCommand.curve_parameters = [{ "contrast": 30 }, { "contrast": 50 }, { "contrast": 70 }, { "contrast": 90 }] import numpy # reset treshold and desable noise before measuring maps #m = numpy.mean(topo.sim["V1Simple"].output_fns[2].t) #topo.sim["V1Simple"].output_fns[2].t*=0 #topo.sim["V1Simple"].output_fns[2].t+=m #sc = topo.sim["V1Simple"].output_fns[1].generator.scale #topo.sim["V1Simple"].output_fns[1].generator.scale=0.0 #save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Orientation Preference")
def v2_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ from param import normalize_path topo.sim["V1Simple"].measure_maps = True topo.sim["V1Complex"].measure_maps = True topo.sim["V2"].measure_maps = True topo.sim["V2"].in_connections[0].strength = 4 save_plotgroup("Orientation Preference and Complexity") # Plot all projections for all measured_sheets measured_sheets = [ s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s, 'measure_maps') and s.measure_maps ] for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection", projection=p) save_plotgroup("Activity") # topo.sim["V1Simple"].measure_maps = False # topo.sim["V1Complex"].measure_maps = False save_plotgroup("Corner OR Preference") from topo.command import save_snapshot
def v2_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet.basic import GeneratorSheet exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ from param import normalize_path topo.sim["V1Simple"].measure_maps = True topo.sim["V1Complex"].measure_maps = True topo.sim["V2"].measure_maps = True topo.sim["V2"].in_connections[0].strength=4 save_plotgroup("Orientation Preference and Complexity") # Plot all projections for all measured_sheets measured_sheets = [s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s,'measure_maps') and s.measure_maps] for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p) save_plotgroup("Activity") # topo.sim["V1Simple"].measure_maps = False # topo.sim["V1Complex"].measure_maps = False save_plotgroup("Corner OR Preference") from topo.command.basic import save_snapshot
def plotting_and_saving_analysis_fn(prefix=""): """For use with memuse_batch() to test snapshot and plotting memory usage.""" import topo from topo.command import save_snapshot from topo.command.analysis import measure_sine_pref, save_plotgroup print "%sMemuse at time %s: %s" % (prefix, topo.sim.timestr(), allsizes_mb()) measure_sine_pref() print "%sAfter measure_sine_pref: %s" % (prefix, allsizes_mb()) save_plotgroup("Orientation Preference") print "%sAfter save_plotgroup: %s" % (prefix, allsizes_mb()) save_snapshot("/tmp/tmp.typ") print "%sAfter save_snapshot: %s" % (prefix, allsizes_mb())
def t_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ print 'Called complex_analysis_function' import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand import contrib.jacommands exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) print 'Build a list of all sheets worth measuring' f = lambda x: hasattr(x,'measure_maps') and x.measure_maps measured_sheets = filter(f,topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() print 'Set potentially reasonable defaults; not necessarily useful' topo.command.analysis.coordinate=(0.0,0.0) if input_sheets: topo.command.analysis.input_sheet_name=input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name=measured_sheets[0].name FeatureCurveCommand.curve_parameters=[{"contrast":30},{"contrast":50},{"contrast":70},{"contrast":90}] import numpy # reset treshold and desable noise before measuring maps #m = numpy.mean(topo.sim["V1Simple"].output_fns[2].t) #topo.sim["V1Simple"].output_fns[2].t*=0 #topo.sim["V1Simple"].output_fns[2].t+=m #sc = topo.sim["V1Simple"].output_fns[1].generator.scale #topo.sim["V1Simple"].output_fns[1].generator.scale=0.0 #save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Orientation Preference")
def default_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ # CEBALERT: why are these imports here rather than at the top? import topo from topo.command.analysis import save_plotgroup # Save all plotgroups listed in default_analysis_plotgroups for pg in default_analysis_plotgroups: save_plotgroup(pg,use_cached_results=True) # Plot projections from each measured map measured_sheets = [s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s,'measure_maps') and s.measure_maps] for s in measured_sheets: for p in s.in_connections: save_plotgroup("Projection",projection=p) # Test response to a standardized pattern from topo.pattern import Gaussian from math import pi pattern_present(inputs=Gaussian(orientation=pi/4,aspect_ratio=4.7)) save_plotgroup("Activity",saver_params={"filename_suffix":"_45d"})
def default_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ # CEBALERT: why are these imports here rather than at the top? import topo from topo.command.analysis import save_plotgroup # Save all plotgroups listed in default_analysis_plotgroups for pg in default_analysis_plotgroups: save_plotgroup(pg, use_cached_results=True) # Plot projections from each measured map measured_sheets = [ s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s, 'measure_maps') and s.measure_maps ] for s in measured_sheets: for p in s.in_connections: save_plotgroup("Projection", projection=p) # Test response to a standardized pattern from topo.pattern import Gaussian from math import pi pattern_present(inputs=Gaussian(orientation=pi / 4, aspect_ratio=4.7)) save_plotgroup("Activity", saver_params={"filename_suffix": "_45d"})
def analyse(self, steps=[], ns=10, offset_x=0, offset_y=0): save_plotgroup("Orientation Preference and Complexity") # save_plotgroup("Position Preference") for (x, y) in steps: xindex = self.center_r + offset_x + x yindex = self.center_c + offset_y + y xcoor, ycoor = self.sheet.matrixidx2sheet(xindex, yindex) c = topo.command.pylabplot.measure_size_response.instance( sheet=self.sheet, num_phase=8, num_sizes=ns, max_size=3.0, coords=[(xcoor, ycoor)] ) c.duraton = 4.0 c(coords=[(xcoor, ycoor)], frequencies=[__main__.__dict__.get("FREQ", 2.4)]) self.data_dict[(xindex, yindex)] = {} self.data_dict[(xindex, yindex)]["ST"] = self.calculate_RF_sizes(xindex, yindex) self.plot_size_tunning(xindex, yindex) self.data_dict[(xindex, yindex)]["OCT"] = self.perform_orientation_contrast_analysis( self.data_dict[(xindex, yindex)]["ST"], xcoor, ycoor, xindex, yindex ) self.plot_orientation_contrast_tuning(xindex, yindex) self.plot_orientation_contrast_tuning_abs(xindex, yindex) # f = open(normalize_path("dict.dat"),'wb') # import pickle # pickle.dump(self.data_dict,f) # f.close() self.plot_histograms_of_measures() lhi = compute_local_homogeneity_index(self.sheet.sheet_views["OrientationPreference"].view()[0] * pi, 0.5) self.plot_map_feature_to_surround_modulation_feature_correlations(lhi, "Local Homogeneity Index") self.plot_map_feature_to_surround_modulation_feature_correlations( self.sheet.sheet_views["OrientationSelectivity"].view()[0], "OrientationSelectivity" ) self.plot_map_feature_to_surround_modulation_feature_correlations( self.sheet.sheet_views["OrientationPreference"].view()[0] * numpy.pi, "OrientationPreference" )
def sa(): import topo from topo.command.analysis import save_plotgroup from param import normalize_path import contrib.jacommands import contrib.surround_analysis_new_cleaned from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand reload(contrib.surround_analysis_new_cleaned) s = normalize_path.prefix exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ from topo.analysis.featureresponses import FeatureResponses , PatternPresenter, FeatureMaps PatternPresenter.duration=4.0 normalize_path.prefix = s SinusoidalMeasureResponseCommand.scale=__main__.__dict__.get("analysis_scale",1.0) SinusoidalMeasureResponseCommand.frequencies=[2.4] if __main__.__dict__.get("Max",False): from topo.misc.distribution import DSF_MaxValue preference_fn=DSF_MaxValue(value_scale=(0., 1./numpy.pi),selectivity_scale=(0.,17.0)) topo.command.pylabplot.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Complex"],preference_fn=preference_fn)() else: save_plotgroup("Orientation Preference and Complexity") contrib.surround_analysis_new_cleaned.surround_analysis("V1Complex").run_lhi_informed_analysis(max_curves=__main__.__dict__.get("max_curves",20),center_size=__main__.__dict__.get("center_size",20),index=__main__.__dict__.get("index",0))
def push_pull_analysis_function(): print 'Push pull complex_analysis_function' import topo import numpy from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand import contrib.jacommands from contrib.push_pull.CCLISSOM_push_pull_extra import check_RF_corrleation_vs_connection_weights_correlation from param import normalize_path exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ SinusoidalMeasureResponseCommand.frequencies=[2.4] SinusoidalMeasureResponseCommand.scale=__main__.__dict__.get("analysis_scale",1.0) print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) print 'Build a list of all sheets worth measuring' f = lambda x: hasattr(x,'measure_maps') and x.measure_maps measured_sheets = filter(f,topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() print 'Set potentially reasonable defaults; not necessarily useful' topo.command.analysis.coordinate=(0.0,0.0) if input_sheets: topo.command.analysis.input_sheet_name=input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name=measured_sheets[0].name FeatureCurveCommand.curve_parameters=[{"contrast":30},{"contrast":50},{"contrast":70},{"contrast":90}] save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity",normalize="Individually") # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p,density=3.0) print 'Starting push pull analysis' #analyse_push_pull_connectivity() check_RF_corrleation_vs_connection_weights_correlation() print 'Finished push pull analysis' return if(float(topo.sim.time()) >= 10005.0): print 'Measuring orientations' SinusoidalMeasureResponseCommand.frequencies=[2.4] topo.command.pylabplot.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Simple"])() topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1Simple"],coords=[(0,0)])() topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,-0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,-0.1)])()
def complex_analysis_function(): """ Analysis command for run_batch; Saves maps of orientation preference and analyzes complex cells using Modulation Ratio, Circular Variance and Orientation Bandwidth. Additionally, it saves projection plots. """ import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet save_plotgroup("Orientation Preference, Modulation Ratio, Circular Variance and Orientation Bandwidth") save_plotgroup("Activity") # Plot all projections for all measured_sheets measured_sheets = [s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s,'measure_maps') and s.measure_maps] for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p)
def rf_analysis(): import topo import pylab import topo.analysis.vision import contrib.jacommands from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet.basic import GeneratorSheet from topo.command.analysis import measure_or_tuning_fullfield, measure_or_pref from topo.command.pylabplots import cyclic_tuning_curve from param import normalize_path if(float(topo.sim.time()) <=20010): save_plotgroup("Orientation Preference") save_plotgroup("Activity") # Plot all projections for all measured_sheets measured_sheets = [s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s,'measure_maps') and s.measure_maps] for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p) prefix="WithGC" measure_or_tuning_fullfield() s=topo.sim["V1"] cyclic_tuning_curve(filename_suffix=prefix,filename="OrientationTC:V1:[0,0]",sheet=s,coords=[(0,0)],x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix,filename="OrientationTC:V1:[0.1,0.1]",sheet=s,coords=[(0.1,0.1)],x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix,filename="OrientationTC:V1:[-0.1,-0.1]",sheet=s,coords=[(-0.1,-0.1)],x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix,filename="OrientationTC:V1:[0.1,-0.1]",sheet=s,coords=[(0.1,-0.1)],x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix,filename="OrientationTC:V1:[-0.1,0.1]",sheet=s,coords=[(-0.1,0.1)],x_axis="orientation") else: topo.command.basic.activity_history = numpy.concatenate((contrib.jacommands.activity_history,topo.sim["V1"].activity.flatten()),axis=1) if(float(topo.sim.time()) == 20000): topo.sim["V1"].plastic=False contrib.jacommands.homeostatic_analysis_function() if(float(topo.sim.time()) == 20001): pylab.figure()
def test_cfprojection_saving(self): save_plotgroup("Projection", projection=self.sim["B"].projections("Afferent")) self.exists("testplotfilesaver_000000.00_B_Afferent.png")
def test_cf_saving(self): save_plotgroup("Connection Fields", sheet=self.sim["B"]) self.exists("testplotfilesaver_000000.00_Afferent_(from_A).png")
def test_orientation_preference_saving(self): save_plotgroup("Orientation Preference") self.exists("testplotfilesaver_000000.00_B_Orientation_Preference.png") self.exists("testplotfilesaver_000000.00_B_Orientation_PreferenceAndSelectivity.png") self.exists("testplotfilesaver_000000.00_B_Orientation_Selectivity.png") self.exists("testplotfilesaver_000000.00__Color_Key.png")
def test_activity_saving(self): save_plotgroup("Activity") self.exists("testplotfilesaver_000000.00_A_Activity.png") self.exists("testplotfilesaver_000000.00_B_Activity.png")
def figure4(): dirr = '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE' rhos = {} X = [] Y = [] qual = [] if False: for a in os.listdir(dirr): b = os.path.join(dirr,a); if not stat.S_ISDIR(os.stat(b).st_mode): continue # load result file f = open(os.path.join(b,'results.pickle')) d = pickle.load(f) # lets find out the pinwheel density X.append(abs(d['exc_inh_strength'])) Y.append(abs(d['exc_short_long_ratio'])) mmap = d['orprefmap'][2:-3,2:-3] rho = pinwheel_analysis(mmap)['metadata']['rho'] metric = gamma_metric(rho,k=10.0) sel = numpy.mean(numpy.mean(mmap)) print a, " ", str(rho) , " " , str(metric) , "SEL ", str(sel) qual.append(metric) print X print Y print qual pylab.figure() pylab.scatter(Y,X,s=numpy.array(qual)*50.0) data = np.histogram2d(Y, X, bins=[len(np.unique(Y)),len(np.unique(X))], weights=qual) pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.gca() im = pylab.imshow(data[0],interpolation='none',cmap='gray')#,vmin=0.3) pylab.yticks([0,len(np.unique(Y))-1],[data[1][0],data[1][-1]]) pylab.xticks([0,len(np.unique(X))-1],[data[2][0],data[2][-1]]) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) pylab.colorbar(im,cax=cax) pylab.savefig('figure4.png',dpi=600) if True: plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=9.7_-p_exc_short_long_ratio=0.3_-p_cortex_exc_target_activity=0.003/snapshot.typ',"fig4_1_") plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=10.6_-p_exc_short_long_ratio=0.5_-p_cortex_exc_target_activity=0.003/snapshot.typ',"fig4_2_") plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=9.4_-p_exc_short_long_ratio=0.6_-p_cortex_exc_target_activity=0.003/snapshot.typ',"fig4_3_") plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=10.6_-p_exc_short_long_ratio=0.8_-p_cortex_exc_target_activity=0.003/snapshot.typ',"fig4_4_") if False: fname= '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=9.7_-p_exc_short_long_ratio=0.3_-p_cortex_exc_target_activity=0.003' f = open(fname+'/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][0:-1,0:-1],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/or_map1.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][0:-1,0:-1]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/fft_map1.png', pad_inches=0) load_snapshot(fname+'/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[2],density=6.0,saver_params={'filename_prefix' : '1'}) fname= '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=10.6_-p_exc_short_long_ratio=0.5_-p_cortex_exc_target_activity=0.003' f = open(fname+'/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][0:-1,0:-1],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/or_map2.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][0:-1,0:-1]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/fft_map2.png', pad_inches=0) load_snapshot(fname+'/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[2],density=6.0,saver_params={'filename_prefix' : '2'}) fname= '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=9.4_-p_exc_short_long_ratio=0.6_-p_cortex_exc_target_activity=0.003' f = open(fname+'/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][0:-1,0:-1],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/or_map3.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][0:-1,0:-1]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/fft_map3.png', pad_inches=0) load_snapshot(fname+'/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[2],density=6.0,saver_params={'filename_prefix' : '3'}) fname= '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_EI_II_LONGE/a-p_exc_strength=9_-p_exc_inh_strength=10.6_-p_exc_short_long_ratio=0.8_-p_cortex_exc_target_activity=0.003' f = open(fname+'/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][0:-1,0:-1],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/or_map4.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][0:-1,0:-1]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure3/generated_data/fft_map4.png', pad_inches=0) load_snapshot(fname+'/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[2],density=6.0,saver_params={'filename_prefix' : '4'})
def activity_plotgroup(times=None, **kwargs): if analysis_group('a'): return None from topo.command.analysis import save_plotgroup save_plotgroup("Activity")
def rf_analysis(): import topo import pylab import topo.analysis.vision import contrib.jacommands from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.command.analysis import measure_or_tuning_fullfield, measure_or_pref from topo.command.pylabplot import cyclic_tuning_curve from param import normalize_path if (float(topo.sim.time()) <= 20010): save_plotgroup("Orientation Preference") save_plotgroup("Activity") # Plot all projections for all measured_sheets measured_sheets = [ s for s in topo.sim.objects(ProjectionSheet).values() if hasattr(s, 'measure_maps') and s.measure_maps ] for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection", projection=p) prefix = "WithGC" measure_or_tuning_fullfield() s = topo.sim["V1"] cyclic_tuning_curve(filename_suffix=prefix, filename="OrientationTC:V1:[0,0]", sheet=s, coords=[(0, 0)], x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix, filename="OrientationTC:V1:[0.1,0.1]", sheet=s, coords=[(0.1, 0.1)], x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix, filename="OrientationTC:V1:[-0.1,-0.1]", sheet=s, coords=[(-0.1, -0.1)], x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix, filename="OrientationTC:V1:[0.1,-0.1]", sheet=s, coords=[(0.1, -0.1)], x_axis="orientation") cyclic_tuning_curve(filename_suffix=prefix, filename="OrientationTC:V1:[-0.1,0.1]", sheet=s, coords=[(-0.1, 0.1)], x_axis="orientation") else: topo.command.activity_history = numpy.concatenate( (contrib.jacommands.activity_history, topo.sim["V1"].activity.flatten()), axis=1) if (float(topo.sim.time()) == 20000): topo.sim["V1"].plastic = False contrib.jacommands.homeostatic_analysis_function() if (float(topo.sim.time()) == 20001): pylab.figure()
def push_pull_analysis_function(): print 'Push pull complex_analysis_function' import topo import numpy from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand, FeatureCurveCommand import contrib.jacommands from contrib.push_pull.CCLISSOM_push_pull_extra import check_RF_corrleation_vs_connection_weights_correlation from param import normalize_path exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ SinusoidalMeasureResponseCommand.frequencies = [2.4] SinusoidalMeasureResponseCommand.scale = __main__.__dict__.get( "analysis_scale", 2.3) print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) print 'Build a list of all sheets worth measuring' f = lambda x: hasattr(x, 'measure_maps') and x.measure_maps measured_sheets = filter(f, topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() print 'Set potentially reasonable defaults; not necessarily useful' topo.command.analysis.coordinate = (0.0, 0.0) if input_sheets: topo.command.analysis.input_sheet_name = input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name = measured_sheets[0].name FeatureCurveCommand.curve_parameters = [{ "contrast": 30 }, { "contrast": 50 }, { "contrast": 70 }, { "contrast": 90 }] save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity", normalize="Individually") # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection", projection=p, density=3.0) print 'Starting push pull analysis' #analyse_push_pull_connectivity() check_RF_corrleation_vs_connection_weights_correlation() print 'Finished push pull analysis' return if (float(topo.sim.time()) >= 10005.0): print 'Measuring orientations' SinusoidalMeasureResponseCommand.frequencies = [2.4] topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1Simple"])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1Simple"], coords=[(0, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0.1]", sheet=topo.sim["V1Simple"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,-0.1]", sheet=topo.sim["V1Simple"], coords=[(0.1, -0.1)])()
def complex_surround_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand, FeatureCurveCommand from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.command import save_snapshot from param import normalize_path import contrib.cc_lesi.connection_analysis import contrib.jacommands import contrib.surround_analysis_new_cleaned exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) SinusoidalMeasureResponseCommand.frequencies = [2.4] SinusoidalMeasureResponseCommand.scale = __main__.__dict__.get( "analysis_scale", 2.3) from topo.analysis.featureresponses import PatternPresenter PatternPresenter.duration = 4.0 import topo.command.pylabplot reload(topo.command.pylabplot) # Build a list of all sheets worth measuring f = lambda x: hasattr(x, 'measure_maps') and x.measure_maps measured_sheets = filter(f, topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() # Set potentially reasonable defaults; not necessarily useful topo.command.analysis.coordinate = (0.0, 0.0) if input_sheets: topo.command.analysis.input_sheet_name = input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name = measured_sheets[0].name save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity", normalize='Individually') # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection", projection=p) contrib.cc_lesi.connection_analysis.Analyse_connectivity() if (float(topo.sim.time()) > 6020.0): if __main__.__dict__.get("save", False): save_snapshot(normalize_path('snapshot.typ')) #contrib.surround_analysis.run_dynamics_analysis(0.0,0.0,0.7,__main__.__dict__.get("analysis_scale",0.3)) topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1Complex"])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1Complex"], coords=[(0, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0.1]", sheet=topo.sim["V1Complex"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,-0.1]", sheet=topo.sim["V1Complex"], coords=[(0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,0.1]", sheet=topo.sim["V1Complex"], coords=[(-0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,-0.1]", sheet=topo.sim["V1Complex"], coords=[(-0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.2,0.2]", sheet=topo.sim["V1Complex"], coords=[(0.2, 0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,-0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,-0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.42)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,-0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.42)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.0)])() #contrib.surround_analysis_new_cleaned.surround_analysis("V1Complex").run_analysis_with_step_grid(4,4,max_curves=__main__.__dict__.get("max_curves",20)) contrib.surround_analysis_new_cleaned.surround_analysis( "V1Complex").run_lhi_informed_analysis( max_curves=__main__.__dict__.get("max_curves", 26), center_size=__main__.__dict__.get("center_size", 20))
def test_cf_saving(self): save_plotgroup("Connection Fields", sheet=self.sim['B']) self.exists("testplotfilesaver_000000.00_Afferent_(from_A).png")
def OR_plotgroup(times=None, **kwargs): from topo.command.analysis import save_plotgroup save_plotgroup("Orientation Preference",use_cached_results=True)
def complex_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet.basic import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand import contrib.jacommands exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) # Build a list of all sheets worth measuring f = lambda x: hasattr(x,'measure_maps') and x.measure_maps measured_sheets = filter(f,topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() # Set potentially reasonable defaults; not necessarily useful topo.command.analysis.coordinate=(0.0,0.0) if input_sheets: topo.command.analysis.input_sheet_name=input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name=measured_sheets[0].name FeatureCurveCommand.curve_parameters=[{"contrast":30},{"contrast":50},{"contrast":70},{"contrast":90}] import numpy # reset treshold and desable noise before measuring maps #m = numpy.mean(topo.sim["V1Simple"].output_fns[2].t) #topo.sim["V1Simple"].output_fns[2].t*=0 #topo.sim["V1Simple"].output_fns[2].t+=m #sc = topo.sim["V1Simple"].output_fns[1].generator.scale #topo.sim["V1Simple"].output_fns[1].generator.scale=0.0 a = topo.sim["V1Complex"].in_connections[0].strength SinusoidalMeasureResponseCommand.scale=__main__.__dict__.get("analysis_scale",0.35) if((float(topo.sim.time()) >= 5003.0) and (float(topo.sim.time()) < 5004.0)): topo.sim["V1Complex"].in_connections[0].strength=0 SinusoidalMeasureResponseCommand.frequencies=[3.0] if((float(topo.sim.time()) >= 5005.0) and (float(topo.sim.time()) < 5006.0)): SinusoidalMeasureResponseCommand.frequencies=[3.0] if((float(topo.sim.time()) >= 5006.0) and (float(topo.sim.time()) < 5007.0)): topo.sim["V1Complex"].in_connections[0].strength=0 SinusoidalMeasureResponseCommand.frequencies=[2.4] if((float(topo.sim.time()) >= 5007.0) and (float(topo.sim.time()) < 5008.0)): SinusoidalMeasureResponseCommand.frequencies=[2.4] if((float(topo.sim.time()) >= 10002.0) and (float(topo.sim.time()) < 10003.0)): topo.sim["V1Complex"].in_connections[0].strength=0 SinusoidalMeasureResponseCommand.frequencies=[2.4] if((float(topo.sim.time()) >= 10003.0) and (float(topo.sim.time()) < 10004.0)): topo.sim["V1Complex"].in_connections[0].strength=0 SinusoidalMeasureResponseCommand.frequencies=[3.0] if((float(topo.sim.time()) >= 10004.0) and (float(topo.sim.time()) < 10005.0)): SinusoidalMeasureResponseCommand.frequencies=[2.4] if((float(topo.sim.time()) >= 10005.0) and (float(topo.sim.time()) < 10006.0)): SinusoidalMeasureResponseCommand.frequencies=[3.0] save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity") # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p) if(float(topo.sim.time()) >= 10005.0): print 'Measuring orientations' SinusoidalMeasureResponseCommand.frequencies=[2.4] topo.command.pylabplots.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Complex"])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1Complex"],coords=[(0,0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.0)])() topo.command.pylabplots.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Simple"])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0]",sheet=topo.sim["V1Simple"],coords=[(0,0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,-0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,0.1]",sheet=topo.sim["V1Simple"],coords=[(-0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,-0.1]",sheet=topo.sim["V1Simple"],coords=[(-0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.2,0.2]",sheet=topo.sim["V1Simple"],coords=[(0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.2,-0.2]",sheet=topo.sim["V1Simple"],coords=[(0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.2,0.2]",sheet=topo.sim["V1Simple"],coords=[(-0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.2,-0.2]",sheet=topo.sim["V1Simple"],coords=[(-0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0.1]",sheet=topo.sim["V1Simple"],coords=[(0.0,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,-0.1]",sheet=topo.sim["V1Simple"],coords=[(0.0,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,0]",sheet=topo.sim["V1Simple"],coords=[(-0.1,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,0]",sheet=topo.sim["V1Simple"],coords=[(0.1,-0.0)])() #topo.sim["V1Simple"].output_fns[1].generator.scale=sc topo.sim["V1Complex"].in_connections[0].strength = a
def complex_surround_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand from topo.base.projection import ProjectionSheet from topo.sheet.basic import GeneratorSheet import contrib.jacommands import contrib.surround_analysis exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) SinusoidalMeasureResponseCommand.frequencies=[3.0] SinusoidalMeasureResponseCommand.scale=__main__.__dict__.get("analysis_scale",0.3) from topo.analysis.featureresponses import PatternPresenter PatternPresenter.duration=2.0 import topo.command.pylabplots reload(topo.command.pylabplots) # Build a list of all sheets worth measuring f = lambda x: hasattr(x,'measure_maps') and x.measure_maps measured_sheets = filter(f,topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() # Set potentially reasonable defaults; not necessarily useful topo.command.analysis.coordinate=(0.0,0.0) if input_sheets: topo.command.analysis.input_sheet_name=input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name=measured_sheets[0].name save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity",normalize=True) # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p) if(float(topo.sim.time()) > 6020.0): contrib.surround_analysis.run_dynamics_analysis(0.0,0.0,0.7,__main__.__dict__.get("analysis_scale",0.3)) topo.command.pylabplots.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Complex"])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1Complex"],coords=[(0,0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,-0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,0.24)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.24)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.42)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,-0.24)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.24)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.42)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.3)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.0)])() #topo.command.pylabplots.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Simple"])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0]",sheet=topo.sim["V1Simple"],coords=[(0,0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,-0.1]",sheet=topo.sim["V1Simple"],coords=[(0.1,-0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,0.1]",sheet=topo.sim["V1Simple"],coords=[(-0.1,0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,-0.1]",sheet=topo.sim["V1Simple"],coords=[(-0.1,-0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.2,0.2]",sheet=topo.sim["V1Simple"],coords=[(0.2,0.2)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.2,-0.2]",sheet=topo.sim["V1Simple"],coords=[(0.2,-0.2)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.2,0.2]",sheet=topo.sim["V1Simple"],coords=[(-0.2,0.2)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.2,-0.2]",sheet=topo.sim["V1Simple"],coords=[(-0.2,-0.2)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0.1]",sheet=topo.sim["V1Simple"],coords=[(0.0,0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,-0.1]",sheet=topo.sim["V1Simple"],coords=[(0.0,-0.1)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.1,0]",sheet=topo.sim["V1Simple"],coords=[(-0.1,0.0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.1,0]",sheet=topo.sim["V1Simple"],coords=[(0.1,-0.0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.3,0.3]",sheet=topo.sim["V1Simple"],coords=[(0.3,0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.3,-0.3]",sheet=topo.sim["V1Simple"],coords=[(0.3,-0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.3,0.3]",sheet=topo.sim["V1Simple"],coords=[(-0.3,0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.3,-0.3]",sheet=topo.sim["V1Simple"],coords=[(-0.3,-0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.24,0.24]",sheet=topo.sim["V1Simple"],coords=[(0.24,0.24)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.24,-0.24]",sheet=topo.sim["V1Simple"],coords=[(0.24,-0.24)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.24,0.24]",sheet=topo.sim["V1Simple"],coords=[(-0.24,0.42)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.24,-0.24]",sheet=topo.sim["V1Simple"],coords=[(-0.24,-0.24)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0.24]",sheet=topo.sim["V1Simple"],coords=[(0.0,0.24)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,-0.24]",sheet=topo.sim["V1Simple"],coords=[(0.0,-0.42)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.24,0]",sheet=topo.sim["V1Simple"],coords=[(-0.24,0.0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.24,0]",sheet=topo.sim["V1Simple"],coords=[(0.24,-0.0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,0.3]",sheet=topo.sim["V1Simple"],coords=[(0.0,0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0,-0.3]",sheet=topo.sim["V1Simple"],coords=[(0.0,-0.3)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[-0.3,0]",sheet=topo.sim["V1Simple"],coords=[(-0.3,0.0)])() #topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="SimpleORTC[0.3,0]",sheet=topo.sim["V1Simple"],coords=[(0.3,-0.0)])() contrib.surround_analysis.surround_analysis("V1Complex").analyse([(0,0),(5,0),(-5,0),(0,5),(0,-5),(5,5),(5,-5),(-5,5),(-5,-5),(8,0),(-8,0),(0,8),(0,-8),(8,8),(8,-8),(-8,8),(-8,-8)],15,5)
def activity_plotgroup(): from topo.command.analysis import save_plotgroup save_plotgroup("Activity")
def test_activity_saving(self): save_plotgroup('Activity') self.exists("testplotfilesaver_000000.00_A_Activity.png") self.exists("testplotfilesaver_000000.00_B_Activity.png")
def activity_plotgroup(times=None, **kwargs): from topo.command.analysis import save_plotgroup save_plotgroup("Activity")
def figure2(): dirr = '/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE' rhos = {} X = [] Y = [] qual = [] if False: for a in os.listdir(dirr): b = os.path.join(dirr,a); if not stat.S_ISDIR(os.stat(b).st_mode): continue # load result file f = open(os.path.join(b,'results.pickle')) d = pickle.load(f) # lets find out the pinwheel density X.append(d['lat_strength_ratio']) Y.append(d['exc_inh_ratio']) #mmap = d['orprefmap'][25:-24,25:-24] mmap = d['orprefmap'][2:-3,2:-3] rho = pinwheel_analysis(mmap)['metadata']['rho'] metric = gamma_metric(rho,k=10.0) sel = numpy.mean(numpy.mean(mmap)) print a, " ", str(rho) , " " , str(metric) , "SEL ", str(sel) qual.append(metric) data = np.histogram2d(Y, X, bins=[len(np.unique(Y)),len(np.unique(X))], weights=qual) pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) im = pylab.imshow(data[0],interpolation='none',cmap='gray')#,vmin=0.3) pylab.colorbar(im,fraction=0.046, pad=0.04) pylab.yticks([0,len(np.unique(Y))-1],[data[1][0],data[1][-1]]) pylab.xticks([0,len(np.unique(X))-1],[data[2][0],data[2][-1]]) pylab.savefig('figure2.png',dpi=600) if True: plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.2_exc_inh_ratio=0.85/snapshot.typ',"fig2_1_") plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.6_exc_inh_ratio=0.8/snapshot.typ',"fig2_2_") plot_ortcs('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.8_exc_inh_ratio=0.65/snapshot.typ',"fig2_3_") if False: f = open('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.2_exc_inh_ratio=0.85/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][61:-60,61:-60],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/or_map3.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][61:-60,61:-60]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/fft_map3.png', pad_inches=0) load_snapshot('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.2_exc_inh_ratio=0.85/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[0],density=1.5,saver_params={'filename_prefix' : '3'}) f = open('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.6_exc_inh_ratio=0.8/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][61:-60,61:-60],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/or_map2.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][61:-60,61:-60]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/fft_map2.png', pad_inches=0) load_snapshot('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.6_exc_inh_ratio=0.8/snapshot.typ') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[0],density=1.5,saver_params={'filename_prefix' : '2'}) f = open('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.8_exc_inh_ratio=0.65/results.pickle') d = pickle.load(f) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(d['orprefmap'][61:-60,61:-60],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/or_map1.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(d['orprefmap'][61:-60,61:-60]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/fft_map1.png', pad_inches=0) load_snapshot('/home/jan/Doc/Papers/fast_inh_paper/DATA/GCAL_SHORTRANGE/lat_strength_ratio=2.8_exc_inh_ratio=0.65/results.pickle') save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[0],density=1.5,saver_params={'filename_prefix' : '1'}) if False: load_snapshot('/home/jan/projects/topographica/GCAL_EI/a-p_exc_strength=3.3_-p_inh_strength=2.805/snapshot.typ') mmap = topo.sim["V1"].sheet_views["OrientationPreference"].view()[0] fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(mmap[61:-60,61:-60],interpolation='none',cmap='hsv',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/or_map4.png', pad_inches=0) fig = pylab.figure(dpi=600,facecolor='w',figsize=(5,5)) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(power_spectrum(mmap[61:-60,61:-60]),interpolation='none',cmap='gray',aspect='normal') pylab.savefig('/home/jan/Doc/Papers/fast_inh_paper/SVG/Figure1/generated_data/fft_map4.png', pad_inches=0) save_plotgroup("Projection",projection=topo.sim["V1"].projections().values()[0],density=1.5,saver_params={'filename_prefix' : '4'})
def test_cfprojection_saving(self): save_plotgroup('Projection', projection=self.sim['B'].projections('Afferent')) self.exists("testplotfilesaver_000000.00_B_Afferent.png")
def complex_surround_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ import topo from topo.command.analysis import save_plotgroup from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand,FeatureCurveCommand from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.command import save_snapshot from param import normalize_path import contrib.jacommands import contrib.surround_analysis_new_cleaned exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) SinusoidalMeasureResponseCommand.frequencies=[2.4] SinusoidalMeasureResponseCommand.scale=__main__.__dict__.get("analysis_scale",0.3) from topo.analysis.featureresponses import PatternPresenter PatternPresenter.duration=4.0 import topo.command.pylabplot reload(topo.command.pylabplot) # Build a list of all sheets worth measuring f = lambda x: hasattr(x,'measure_maps') and x.measure_maps measured_sheets = filter(f,topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() # Set potentially reasonable defaults; not necessarily useful topo.command.analysis.coordinate=(0.0,0.0) if input_sheets: topo.command.analysis.input_sheet_name=input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name=measured_sheets[0].name save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity",normalize='Individually') # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection",projection=p) if(float(topo.sim.time()) > 6020.0): if __main__.__dict__.get("save",False): save_snapshot(normalize_path('snapshot.typ')) #contrib.surround_analysis.run_dynamics_analysis(0.0,0.0,0.7,__main__.__dict__.get("analysis_scale",0.3)) #topo.command.pylabplot.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1Complex"])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1Complex"],coords=[(0,0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,-0.1]",sheet=topo.sim["V1Complex"],coords=[(-0.1,-0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(0.2,-0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,-0.2]",sheet=topo.sim["V1Complex"],coords=[(-0.2,-0.2)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.1]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.1)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0]",sheet=topo.sim["V1Complex"],coords=[(-0.1,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0]",sheet=topo.sim["V1Complex"],coords=[(0.1,-0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,-0.3]",sheet=topo.sim["V1Complex"],coords=[(-0.3,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.42)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,-0.24]",sheet=topo.sim["V1Complex"],coords=[(-0.24,-0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.24)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.24]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.42)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.24,0]",sheet=topo.sim["V1Complex"],coords=[(-0.24,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.24,0]",sheet=topo.sim["V1Complex"],coords=[(0.24,-0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.3]",sheet=topo.sim["V1Complex"],coords=[(0.0,-0.3)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.3,0]",sheet=topo.sim["V1Complex"],coords=[(-0.3,0.0)])() #topo.command.pylabplot.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.3,0]",sheet=topo.sim["V1Complex"],coords=[(0.3,-0.0)])() #contrib.surround_analysis_new_cleaned.surround_analysis("V1Complex").run_analysis_with_step_grid(4,4,max_curves=__main__.__dict__.get("max_curves",20)) contrib.surround_analysis_new_cleaned.surround_analysis("V1Complex").run_lhi_informed_analysis(max_curves=__main__.__dict__.get("max_curves",20),center_size=__main__.__dict__.get("center_size",20))
def complex_analysis_function(): """ Basic example of an analysis command for run_batch; users are likely to need something similar but highly customized. """ print 'Called complex_analysis_function' import topo from topo.command.analysis import save_plotgroup from topo.base.projection import ProjectionSheet from topo.sheet import GeneratorSheet from topo.analysis.featureresponses import SinusoidalMeasureResponseCommand, FeatureCurveCommand import contrib.jacommands exec "from topo.analysis.vision import analyze_complexity" in __main__.__dict__ print 'Analysing' import matplotlib matplotlib.rc('xtick', labelsize=17) matplotlib.rc('ytick', labelsize=17) print 'Build a list of all sheets worth measuring' f = lambda x: hasattr(x, 'measure_maps') and x.measure_maps measured_sheets = filter(f, topo.sim.objects(ProjectionSheet).values()) input_sheets = topo.sim.objects(GeneratorSheet).values() print 'Set potentially reasonable defaults; not necessarily useful' topo.command.analysis.coordinate = (0.0, 0.0) if input_sheets: topo.command.analysis.input_sheet_name = input_sheets[0].name if measured_sheets: topo.command.analysis.sheet_name = measured_sheets[0].name FeatureCurveCommand.curve_parameters = [{ "contrast": 30 }, { "contrast": 50 }, { "contrast": 70 }, { "contrast": 90 }] import numpy # reset treshold and desable noise before measuring maps #m = numpy.mean(topo.sim["V1Simple"].output_fns[2].t) #topo.sim["V1Simple"].output_fns[2].t*=0 #topo.sim["V1Simple"].output_fns[2].t+=m #sc = topo.sim["V1Simple"].output_fns[1].generator.scale #topo.sim["V1Simple"].output_fns[1].generator.scale=0.0 a = topo.sim["V1Complex"].in_connections[0].strength SinusoidalMeasureResponseCommand.scale = __main__.__dict__.get( "analysis_scale", 2.3) MeasureResponseCommand.scale = __main__.__dict__.get("analysis_scale", 2.3) #if((float(topo.sim.time()) >= 5003.0) and (float(topo.sim.time()) < 5004.0)): # topo.sim["V1Complex"].in_connections[0].strength=0 # SinusoidalMeasureResponseCommand.frequencies=[3.0] # if((float(topo.sim.time()) >= 5005.0) and (float(topo.sim.time()) < 5006.0)): # SinusoidalMeasureResponseCommand.frequencies=[3.0] # if((float(topo.sim.time()) >= 5006.0) and (float(topo.sim.time()) < 5007.0)): # topo.sim["V1Complex"].in_connections[0].strength=0 # SinusoidalMeasureResponseCommand.frequencies=[2.4] # if((float(topo.sim.time()) >= 5007.0) and (float(topo.sim.time()) < 5008.0)): # SinusoidalMeasureResponseCommand.frequencies=[2.4] # if((float(topo.sim.time()) >= 10002.0) and (float(topo.sim.time()) < 10003.0)): # topo.sim["V1Complex"].in_connections[0].strength=0 # SinusoidalMeasureResponseCommand.frequencies=[2.4] # if((float(topo.sim.time()) >= 10003.0) and (float(topo.sim.time()) < 10004.0)): # topo.sim["V1Complex"].in_connections[0].strength=0 # SinusoidalMeasureResponseCommand.frequencies=[3.0] # if((float(topo.sim.time()) >= 10004.0) and (float(topo.sim.time()) < 10005.0)): # SinusoidalMeasureResponseCommand.frequencies=[2.4] # if((float(topo.sim.time()) >= 10005.0) and (float(topo.sim.time()) < 10006.0)): # SinusoidalMeasureResponseCommand.frequencies=[3.0] save_plotgroup("Orientation Preference and Complexity") save_plotgroup("Activity") # Plot all projections for all measured_sheets for s in measured_sheets: for p in s.projections().values(): save_plotgroup("Projection", projection=p) if (float(topo.sim.time()) >= 10005.0): print 'Measuring orientations' SinusoidalMeasureResponseCommand.frequencies = [2.4] topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1Complex"])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1Complex"], coords=[(0, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0.1]", sheet=topo.sim["V1Complex"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,-0.1]", sheet=topo.sim["V1Complex"], coords=[(0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,0.1]", sheet=topo.sim["V1Complex"], coords=[(-0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,-0.1]", sheet=topo.sim["V1Complex"], coords=[(-0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.2,0.2]", sheet=topo.sim["V1Complex"], coords=[(0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.2,-0.2]", sheet=topo.sim["V1Complex"], coords=[(0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.2,0.2]", sheet=topo.sim["V1Complex"], coords=[(-0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.2,-0.2]", sheet=topo.sim["V1Complex"], coords=[(-0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0.1]", sheet=topo.sim["V1Complex"], coords=[(0.0, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,-0.1]", sheet=topo.sim["V1Complex"], coords=[(0.0, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,0]", sheet=topo.sim["V1Complex"], coords=[(-0.1, 0.0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0]", sheet=topo.sim["V1Complex"], coords=[(0.1, -0.0)])() topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1Simple"])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0,0]", sheet=topo.sim["V1Simple"], coords=[(0, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0.1,0.1]", sheet=topo.sim["V1Simple"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0.1,-0.1]", sheet=topo.sim["V1Simple"], coords=[(0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[-0.1,0.1]", sheet=topo.sim["V1Simple"], coords=[(-0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[-0.1,-0.1]", sheet=topo.sim["V1Simple"], coords=[(-0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0.2,0.2]", sheet=topo.sim["V1Simple"], coords=[(0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0.2,-0.2]", sheet=topo.sim["V1Simple"], coords=[(0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[-0.2,0.2]", sheet=topo.sim["V1Simple"], coords=[(-0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[-0.2,-0.2]", sheet=topo.sim["V1Simple"], coords=[(-0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0,0.1]", sheet=topo.sim["V1Simple"], coords=[(0.0, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0,-0.1]", sheet=topo.sim["V1Simple"], coords=[(0.0, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[-0.1,0]", sheet=topo.sim["V1Simple"], coords=[(-0.1, 0.0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="SimpleORTC[0.1,0]", sheet=topo.sim["V1Simple"], coords=[(0.1, -0.0)])() #topo.sim["V1Simple"].output_fns[1].generator.scale=sc topo.sim["V1Complex"].in_connections[0].strength = a
def gc_homeo_af(): import contrib.jsldefs import topo.command.pylabplots import contrib.jacommands from topo.command.analysis import save_plotgroup from topo.analysis.featureresponses import FeatureResponses , PatternPresenter, FeatureMaps #FeatureResponses.repetitions=10 FeatureMaps.selectivity_multiplier=20 PatternPresenter.duration=0.2 PatternPresenter.apply_output_fns=False import topo.command.pylabplots reload(topo.command.pylabplots) on = topo.sim["LGNOn"].in_connections[0].strength off = topo.sim["LGNOff"].in_connections[0].strength if __main__.__dict__.get("GC",False): topo.sim["LGNOn"].in_connections[0].strength=0 topo.sim["LGNOff"].in_connections[0].strength=0 contrib.jsldefs.homeostatic_analysis_function() topo.command.pylabplots.fftplot(topo.sim["V1"].sheet_views["OrientationPreference"].view()[0],filename="V1ORMAPFFT") from topo.misc.filepath import normalize_path, application_path from scipy.io import write_array import numpy write_array(normalize_path(str(topo.sim.time())+"orprefmap.txt"), topo.sim["V1"].sheet_views["OrientationPreference"].view()[0]) write_array(normalize_path(str(topo.sim.time())+"orselmap.txt"), topo.sim["V1"].sheet_views["OrientationSelectivity"].view()[0]) topo.sim["LGNOn"].in_connections[0].strength = on topo.sim["LGNOff"].in_connections[0].strength = off print float(topo.sim.time()) if(float(topo.sim.time()) > 19002.0): #topo.sim["V1"].output_fns[2].scale=0.0 save_plotgroup("Position Preference") PatternPresenter.duration=1.0 PatternPresenter.apply_output_fns=True import topo.command.pylabplots reload(topo.command.pylabplots) topo.command.pylabplots.measure_or_tuning_fullfield.instance(sheet=topo.sim["V1"],repetitions=10)(repetitions=10) topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1"],coords=[(0,0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1"],coords=[(0.1,0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1"],coords=[(0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0]",sheet=topo.sim["V1"],coords=[(0,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0.1]",sheet=topo.sim["V1"],coords=[(0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,-0.1]",sheet=topo.sim["V1"],coords=[(0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0.1]",sheet=topo.sim["V1"],coords=[(-0.1,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,-0.1]",sheet=topo.sim["V1"],coords=[(-0.1,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,0.2]",sheet=topo.sim["V1"],coords=[(0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.2,-0.2]",sheet=topo.sim["V1"],coords=[(0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,0.2]",sheet=topo.sim["V1"],coords=[(-0.2,0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.2,-0.2]",sheet=topo.sim["V1"],coords=[(-0.2,-0.2)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,0.1]",sheet=topo.sim["V1"],coords=[(0.0,0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0,-0.1]",sheet=topo.sim["V1"],coords=[(0.0,-0.1)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[-0.1,0]",sheet=topo.sim["V1"],coords=[(-0.1,0.0)])() topo.command.pylabplots.cyclic_tuning_curve.instance(x_axis="orientation",filename="ORTC[0.1,0]",sheet=topo.sim["V1"],coords=[(0.1,-0.0)])() if(float(topo.sim.time()) > 20000.0): topo.sim["V1"].output_fns[1].plastic=False contrib.jacommands.measure_histogram(iterations=1000)
def gc_homeo_af(): import contrib.jsldefs import topo.command.pylabplot import contrib.jacommands from topo.command.analysis import save_plotgroup from topo.analysis.featureresponses import FeatureResponses, PatternPresenter, FeatureMaps #FeatureResponses.repetitions=10 FeatureMaps.selectivity_multiplier = 20 PatternPresenter.duration = 0.2 PatternPresenter.apply_output_fns = False import topo.command.pylabplot reload(topo.command.pylabplot) on = topo.sim["LGNOn"].in_connections[0].strength off = topo.sim["LGNOff"].in_connections[0].strength if __main__.__dict__.get("GC", False): topo.sim["LGNOn"].in_connections[0].strength = 0 topo.sim["LGNOff"].in_connections[0].strength = 0 contrib.jsldefs.homeostatic_analysis_function() topo.command.pylabplot.fftplot( topo.sim["V1"].sheet_views["OrientationPreference"].view()[0], filename="V1ORMAPFFT") from topo.misc.filepath import normalize_path, application_path from scipy.io import write_array import numpy write_array(normalize_path(str(topo.sim.time()) + "orprefmap.txt"), topo.sim["V1"].sheet_views["OrientationPreference"].view()[0]) write_array(normalize_path(str(topo.sim.time()) + "orselmap.txt"), topo.sim["V1"].sheet_views["OrientationSelectivity"].view()[0]) topo.sim["LGNOn"].in_connections[0].strength = on topo.sim["LGNOff"].in_connections[0].strength = off print float(topo.sim.time()) if (float(topo.sim.time()) > 19002.0): #topo.sim["V1"].output_fns[2].scale=0.0 save_plotgroup("Position Preference") PatternPresenter.duration = 1.0 PatternPresenter.apply_output_fns = True import topo.command.pylabplot reload(topo.command.pylabplot) topo.command.pylabplot.measure_or_tuning_fullfield.instance( sheet=topo.sim["V1"], repetitions=10)(repetitions=10) topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1"], coords=[(0, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1"], coords=[(0.1, 0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0]", sheet=topo.sim["V1"], coords=[(0, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0.1]", sheet=topo.sim["V1"], coords=[(0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,-0.1]", sheet=topo.sim["V1"], coords=[(0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,0.1]", sheet=topo.sim["V1"], coords=[(-0.1, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,-0.1]", sheet=topo.sim["V1"], coords=[(-0.1, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.2,0.2]", sheet=topo.sim["V1"], coords=[(0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.2,-0.2]", sheet=topo.sim["V1"], coords=[(0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.2,0.2]", sheet=topo.sim["V1"], coords=[(-0.2, 0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.2,-0.2]", sheet=topo.sim["V1"], coords=[(-0.2, -0.2)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,0.1]", sheet=topo.sim["V1"], coords=[(0.0, 0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0,-0.1]", sheet=topo.sim["V1"], coords=[(0.0, -0.1)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[-0.1,0]", sheet=topo.sim["V1"], coords=[(-0.1, 0.0)])() topo.command.pylabplot.cyclic_tuning_curve.instance( x_axis="orientation", filename="ORTC[0.1,0]", sheet=topo.sim["V1"], coords=[(0.1, -0.0)])() if (float(topo.sim.time()) > 20000.0): topo.sim["V1"].output_fns[1].plastic = False contrib.jacommands.measure_histogram(iterations=1000)