def meta_nanmedian_dim(input, dim=-1, keepdim=False): dim = utils.reduction_dims(input.shape, (dim, )) output_shape = _compute_reduction_shape(input, dim, keepdim) return ( input.new_empty(output_shape), input.new_empty(output_shape, dtype=torch.long), )
def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) dims = utils.reduction_dims(input.shape, dims) output_shape = _compute_reduction_shape(input, dims, keepdim) return input.new_empty(output_shape, dtype=output_dtype)
def meta_var_mean_correction(self, dim, *, correction, keepdim=False): dim = utils.reduction_dims(self.shape, dim) output_shape = _compute_reduction_shape(self, dim, keepdim) result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype)) result2 = self.new_empty(output_shape) return result1, result2