def forward(self, inputs): output = inputs #print(output.shape) x_0 = inputs conv = getattr(self, 'conv1') x_1 = conv(x_0) conv = getattr(self, 'conv2') x_2 = conv(x_1) conv = getattr(self, 'conv3') x_3 = conv(x_2) conv = getattr(self, 'conv4') x_4 = conv(x_3) return x_0 + x_1 + x_2 + x_3 + x_4
def forward(self, inputs): x = inputs for i in range(1, self.n + 1): conv = getattr(self, 'conv%d' % i) x = conv(x) return x
def forward(self, inputs): inputs = self.keep_dim(inputs) x = inputs for i in range(1, self.n + 1): conv = getattr(self, 'conv%d' % i) x = conv(x) out = self.relu(x + inputs) return out
def conv_nbn(in_channels, out_channels, conv, *args, **kwargs): return nn.Sequential(conv(in_channels, out_channels, *args, **kwargs))
def conv_bn(in_channels, out_channels, conv, *args, **kwargs): return nn.Sequential(conv(in_channels, out_channels, *args, **kwargs), nn.BatchNorm2d(out_channels))