예제 #1
0
    def block_backward_sync(self, model: DistributedDataParallel):
        """
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        Returns:
            context manager with sync behaviour off
        """
        yield model.no_sync()
class TrainLoop:
    def __init__(
        self,
        *,
        model,
        diffusion,
        data,
        batch_size,
        microbatch,
        lr,
        ema_rate,
        log_interval,
        save_interval,
        resume_checkpoint,
        use_fp16=False,
        fp16_scale_growth=1e-3,
        schedule_sampler=None,
        weight_decay=0.0,
        lr_anneal_steps=0,
    ):
        self.model = model
        self.diffusion = diffusion
        self.data = data
        self.batch_size = batch_size
        self.microbatch = microbatch if microbatch > 0 else batch_size
        self.lr = lr
        self.ema_rate = (
            [ema_rate]
            if isinstance(ema_rate, float)
            else [float(x) for x in ema_rate.split(",")]
        )
        self.log_interval = log_interval
        self.save_interval = save_interval
        self.resume_checkpoint = resume_checkpoint
        self.use_fp16 = use_fp16
        self.fp16_scale_growth = fp16_scale_growth
        self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
        self.weight_decay = weight_decay
        self.lr_anneal_steps = lr_anneal_steps

        self.step = 0
        self.resume_step = 0
        self.global_batch = self.batch_size * dist.get_world_size()

        self.model_params = list(self.model.parameters())
        self.master_params = self.model_params
        self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
        self.sync_cuda = th.cuda.is_available()

        self._load_and_sync_parameters()
        if self.use_fp16:
            self._setup_fp16()

        self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
        if self.resume_step:
            self._load_optimizer_state()
            # Model was resumed, either due to a restart or a checkpoint
            # being specified at the command line.
            self.ema_params = [
                self._load_ema_parameters(rate) for rate in self.ema_rate
            ]
        else:
            self.ema_params = [
                copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
            ]

        if th.cuda.is_available():
            self.use_ddp = True
            self.ddp_model = DDP(
                self.model,
                device_ids=[dist_util.dev()],
                output_device=dist_util.dev(),
                broadcast_buffers=False,
                bucket_cap_mb=128,
                find_unused_parameters=False,
            )
        else:
            if dist.get_world_size() > 1:
                logger.warn(
                    "Distributed training requires CUDA. "
                    "Gradients will not be synchronized properly!"
                )
            self.use_ddp = False
            self.ddp_model = self.model

    def _load_and_sync_parameters(self):
        resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint

        if resume_checkpoint:
            self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
            if dist.get_rank() == 0:
                logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
                self.model.load_state_dict(
                    dist_util.load_state_dict(
                        resume_checkpoint, map_location=dist_util.dev()
                    )
                )

        dist_util.sync_params(self.model.parameters())

    def _load_ema_parameters(self, rate):
        ema_params = copy.deepcopy(self.master_params)

        main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
        ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
        if ema_checkpoint:
            if dist.get_rank() == 0:
                logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
                state_dict = dist_util.load_state_dict(
                    ema_checkpoint, map_location=dist_util.dev()
                )
                ema_params = self._state_dict_to_master_params(state_dict)

        dist_util.sync_params(ema_params)
        return ema_params

    def _load_optimizer_state(self):
        main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
        opt_checkpoint = bf.join(
            bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
        )
        if bf.exists(opt_checkpoint):
            logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
            state_dict = dist_util.load_state_dict(
                opt_checkpoint, map_location=dist_util.dev()
            )
            self.opt.load_state_dict(state_dict)

    def _setup_fp16(self):
        self.master_params = make_master_params(self.model_params)
        self.model.convert_to_fp16()

    def run_loop(self):
        while (
            not self.lr_anneal_steps
            or self.step + self.resume_step < self.lr_anneal_steps
        ):
            batch, cond = next(self.data)
            self.run_step(batch, cond)
            if self.step % self.log_interval == 0:
                logger.dumpkvs()
            if self.step % self.save_interval == 0:
                self.save()
                # Run for a finite amount of time in integration tests.
                if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
                    return
            self.step += 1
        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save()

    def run_step(self, batch, cond):
        self.forward_backward(batch, cond)
        if self.use_fp16:
            self.optimize_fp16()
        else:
            self.optimize_normal()
        self.log_step()

    def forward_backward(self, batch, cond):
        zero_grad(self.model_params)
        for i in range(0, batch.shape[0], self.microbatch):
            micro = batch[i : i + self.microbatch].to(dist_util.dev())
            micro_cond = {
                k: v[i : i + self.microbatch].to(dist_util.dev())
                for k, v in cond.items()
            }
            last_batch = (i + self.microbatch) >= batch.shape[0]
            t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())

            compute_losses = functools.partial(
                self.diffusion.training_losses,
                self.ddp_model,
                micro,
                t,
                model_kwargs=micro_cond,
            )

            if last_batch or not self.use_ddp:
                losses = compute_losses()
            else:
                with self.ddp_model.no_sync():
                    losses = compute_losses()

            if isinstance(self.schedule_sampler, LossAwareSampler):
                self.schedule_sampler.update_with_local_losses(
                    t, losses["loss"].detach()
                )

            loss = (losses["loss"] * weights).mean()
            log_loss_dict(
                self.diffusion, t, {k: v * weights for k, v in losses.items()}
            )
            if self.use_fp16:
                loss_scale = 2 ** self.lg_loss_scale
                (loss * loss_scale).backward()
            else:
                loss.backward()

    def optimize_fp16(self):
        if any(not th.isfinite(p.grad).all() for p in self.model_params):
            self.lg_loss_scale -= 1
            logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
            return

        model_grads_to_master_grads(self.model_params, self.master_params)
        self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
        self._log_grad_norm()
        self._anneal_lr()
        self.opt.step()
        for rate, params in zip(self.ema_rate, self.ema_params):
            update_ema(params, self.master_params, rate=rate)
        master_params_to_model_params(self.model_params, self.master_params)
        self.lg_loss_scale += self.fp16_scale_growth

    def optimize_normal(self):
        self._log_grad_norm()
        self._anneal_lr()
        self.opt.step()
        for rate, params in zip(self.ema_rate, self.ema_params):
            update_ema(params, self.master_params, rate=rate)

    def _log_grad_norm(self):
        sqsum = 0.0
        for p in self.master_params:
            sqsum += (p.grad ** 2).sum().item()
        logger.logkv_mean("grad_norm", np.sqrt(sqsum))

    def _anneal_lr(self):
        if not self.lr_anneal_steps:
            return
        frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
        lr = self.lr * (1 - frac_done)
        for param_group in self.opt.param_groups:
            param_group["lr"] = lr

    def log_step(self):
        logger.logkv("step", self.step + self.resume_step)
        logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
        if self.use_fp16:
            logger.logkv("lg_loss_scale", self.lg_loss_scale)

    def save(self):
        def save_checkpoint(rate, params):
            state_dict = self._master_params_to_state_dict(params)
            if dist.get_rank() == 0:
                logger.log(f"saving model {rate}...")
                if not rate:
                    filename = f"model{(self.step+self.resume_step):06d}.pt"
                else:
                    filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
                with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
                    th.save(state_dict, f)

        save_checkpoint(0, self.master_params)
        for rate, params in zip(self.ema_rate, self.ema_params):
            save_checkpoint(rate, params)

        if dist.get_rank() == 0:
            with bf.BlobFile(
                bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
                "wb",
            ) as f:
                th.save(self.opt.state_dict(), f)

        dist.barrier()

    def _master_params_to_state_dict(self, master_params):
        if self.use_fp16:
            master_params = unflatten_master_params(
                self.model.parameters(), master_params
            )
        state_dict = self.model.state_dict()
        for i, (name, _value) in enumerate(self.model.named_parameters()):
            assert name in state_dict
            state_dict[name] = master_params[i]
        return state_dict

    def _state_dict_to_master_params(self, state_dict):
        params = [state_dict[name] for name, _ in self.model.named_parameters()]
        if self.use_fp16:
            return make_master_params(params)
        else:
            return params
예제 #3
0
def main():
    args = create_argparser().parse_args()

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model and diffusion...")
    model, diffusion = create_classifier_and_diffusion(
        **args_to_dict(args,
                       classifier_and_diffusion_defaults().keys()))
    model.to(dist_util.dev())
    if args.noised:
        schedule_sampler = create_named_schedule_sampler(
            args.schedule_sampler, diffusion)

    resume_step = 0
    if args.resume_checkpoint:
        resume_step = parse_resume_step_from_filename(args.resume_checkpoint)
        if dist.get_rank() == 0:
            logger.log(
                f"loading model from checkpoint: {args.resume_checkpoint}... at {resume_step} step"
            )
            model.load_state_dict(
                dist_util.load_state_dict(args.resume_checkpoint,
                                          map_location=dist_util.dev()))

    # Needed for creating correct EMAs and fp16 parameters.
    dist_util.sync_params(model.parameters())

    mp_trainer = MixedPrecisionTrainer(model=model,
                                       use_fp16=args.classifier_use_fp16,
                                       initial_lg_loss_scale=16.0)

    model = DDP(
        model,
        device_ids=[dist_util.dev()],
        output_device=dist_util.dev(),
        broadcast_buffers=False,
        bucket_cap_mb=128,
        find_unused_parameters=False,
    )

    logger.log("creating data loader...")
    data = load_data(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        image_size=args.image_size,
        class_cond=True,
        random_crop=True,
    )
    if args.val_data_dir:
        val_data = load_data(
            data_dir=args.val_data_dir,
            batch_size=args.batch_size,
            image_size=args.image_size,
            class_cond=True,
        )
    else:
        val_data = None

    logger.log(f"creating optimizer...")
    opt = AdamW(mp_trainer.master_params,
                lr=args.lr,
                weight_decay=args.weight_decay)
    if args.resume_checkpoint:
        opt_checkpoint = bf.join(bf.dirname(args.resume_checkpoint),
                                 f"opt{resume_step:06}.pt")
        logger.log(
            f"loading optimizer state from checkpoint: {opt_checkpoint}")
        opt.load_state_dict(
            dist_util.load_state_dict(opt_checkpoint,
                                      map_location=dist_util.dev()))

    logger.log("training classifier model...")

    def forward_backward_log(data_loader, prefix="train"):
        batch, extra = next(data_loader)
        labels = extra["y"].to(dist_util.dev())

        batch = batch.to(dist_util.dev())
        # Noisy images
        if args.noised:
            t, _ = schedule_sampler.sample(batch.shape[0], dist_util.dev())
            batch = diffusion.q_sample(batch, t)
        else:
            t = th.zeros(batch.shape[0], dtype=th.long, device=dist_util.dev())

        for i, (sub_batch, sub_labels, sub_t) in enumerate(
                split_microbatches(args.microbatch, batch, labels, t)):
            logits = model(sub_batch, timesteps=sub_t)
            loss = F.cross_entropy(logits, sub_labels, reduction="none")

            losses = {}
            losses[f"{prefix}_loss"] = loss.detach()
            losses[f"{prefix}_acc@1"] = compute_top_k(logits,
                                                      sub_labels,
                                                      k=1,
                                                      reduction="none")
            losses[f"{prefix}_acc@5"] = compute_top_k(logits,
                                                      sub_labels,
                                                      k=5,
                                                      reduction="none")
            log_loss_dict(diffusion, sub_t, losses)
            del losses
            loss = loss.mean()
            if loss.requires_grad:
                if i == 0:
                    mp_trainer.zero_grad()
                mp_trainer.backward(loss * len(sub_batch) / len(batch))

    for step in range(args.iterations - resume_step):
        logger.logkv("step", step + resume_step)
        logger.logkv(
            "samples",
            (step + resume_step + 1) * args.batch_size * dist.get_world_size(),
        )
        if args.anneal_lr:
            set_annealed_lr(opt, args.lr,
                            (step + resume_step) / args.iterations)
        forward_backward_log(data)
        mp_trainer.optimize(opt)
        if val_data is not None and not step % args.eval_interval:
            with th.no_grad():
                with model.no_sync():
                    model.eval()
                    forward_backward_log(val_data, prefix="val")
                    model.train()
        if not step % args.log_interval:
            logger.dumpkvs()
        if (step and dist.get_rank() == 0
                and not (step + resume_step) % args.save_interval):
            logger.log("saving model...")
            save_model(mp_trainer, opt, step + resume_step)

    if dist.get_rank() == 0:
        logger.log("saving model...")
        save_model(mp_trainer, opt, step + resume_step)
    dist.barrier()