예제 #1
0
    def test_fp16(self):
        store = c10d.TCPStore('localhost', self.port, self.rank == 0)
        process_group = c10d.ProcessGroupNCCL(store, self.rank,
                                              self.world_size)

        gpus = gpus_for_rank(self.world_size)[self.rank]
        model = nn.Linear(1, 1, bias=False).cuda(gpus[0]).half()
        nn.init.constant_(model.weight, 1)
        ddp_model = distributed_c10d._DistributedDataParallelC10d(
            model,
            device_ids=[gpus[0]],
            process_group=process_group,
            bucket_cap_mb=1,
        )

        # Input 2**15, so that the gradients will overflow with a
        # world_size of 2, unless we normalize the gradient by the
        # world_size before the reduction
        input = torch.Tensor([[2**15]]).cuda(gpus[0]).half()

        # Step model
        ddp_model.train()
        output = ddp_model(input)
        loss = output.sum()
        loss.backward()

        self.assertFalse(
            any(torch.isinf(p.grad).any() for p in ddp_model.parameters()))
예제 #2
0
    def _test_ddp_with_process_group(self, process_group):
        gpus = gpus_for_rank(self.world_size)[self.rank]
        model = Net()
        ddp_model = distributed_c10d._DistributedDataParallelC10d(
            copy.deepcopy(model).cuda(gpus[0]),
            device_ids=gpus,
            process_group=process_group)

        model.cuda(gpus[0])

        local_batch_size = len(gpus)
        global_batch_size = self.world_size * local_batch_size
        input = torch.randn(global_batch_size, 2).cuda(gpus[0])
        target = torch.randn(global_batch_size, 4).cuda(gpus[0])

        def step_model(model, input, target):
            model.train()
            output = model(input)
            loss = F.mse_loss(output, target)
            loss.backward()

        def update_parameters(model):
            for param in model.parameters():
                param.data -= param.grad
                param.grad = None

        # check two model parameters over 2 iterations
        for iteration in range(2):
            # single cpu/gpu training
            step_model(model, input, target)

            # DDP training, DDP scatters subsets of input_cpu to nodes/GPUs
            step_model(
                ddp_model, input[self.rank * local_batch_size:(self.rank + 1) *
                                 local_batch_size],
                target[self.rank * local_batch_size:(self.rank + 1) *
                       local_batch_size])

            # Update weights and run a second iteration to shake out errors
            update_parameters(model)
            update_parameters(ddp_model)
            self.assertEqual(len(list(model.parameters())),
                             len(list(ddp_model.parameters())))
            for i, j in zip(model.parameters(), ddp_model.parameters()):
                self.assertEqual(i, j)

            # Shuffle the input so that DDP input is different
            torch.manual_seed(1337 + iteration)
            input = input[torch.randperm(global_batch_size)]
예제 #3
0
def main():
    # is_chief indicates this machine will do shared tasks for the cluster
    # such as logging and checkpointing
    # is_chief must be true only for at most 1 process in training cluster
    # $RANK is set by pytorch.distributed.launch
    # https://github.com/pytorch/pytorch/blob/db6e4576dab097abf01d032c3326e4b285eb8499/torch/distributed/launch.py#L193
    global is_chief, event_writer, global_example_count, last_recv_bytes, last_transmit_bytes, last_log_time

    is_chief = (not args.distributed) or (int(os.environ['RANK'])==0)

    global_example_count = 0
    if is_chief:
      print(f"Logging to {args.logdir}")
      event_writer = SummaryWriter(args.logdir)
      log_tb("first", time.time())
    else:
      event_writer = NoOp()

    # baseline number for network bytes
    last_recv_bytes, last_transmit_bytes = network_bytes()
    last_log_time = time.time()
    
    print(args)
    print("~~epoch\thours\ttop1Accuracy\n")

    # need to index validation directory before we start counting the time
    dataloader.sort_ar(args.data+'/validation')
    
    global reduce_function
    if args.c10d:
        print('Distributed: loading c10d process group')
        # https://github.com/pytorch/pytorch/blob/master/torch/lib/c10d/TCPStore.hpp
        torch.cuda.set_device(args.local_rank)
        rank = int(os.environ['RANK'])
        store = c10d.TCPStore(os.environ['MASTER_ADDR'], int(os.environ['MASTER_PORT']), rank==0) # (masterAddr, masterPort, isServer) 
        process_group = c10d.ProcessGroupNCCL(store, rank, args.world_size) # (store, rank, size)
        reduce_function = lambda t: process_group.allreduce(t, c10d.AllreduceOptions().reduceOp)
    elif args.distributed:
        print('Distributed: initializing process group')
        torch.cuda.set_device(args.local_rank)
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size)
        assert(args.world_size == dist.get_world_size())
        reduce_function = lambda t: dist.all_reduce(t, op=dist.reduce_op.SUM)
        print("Distributed: success (%d/%d)"%(args.local_rank, args.world_size))

    if args.fp16: assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    print("Loading model")
    if args.factorized_resnet: model = resnet.resnet50factorized(pretrained=args.pretrained)
    else: model = resnet.resnet50(pretrained=args.pretrained)

    model = model.cuda()
    if args.init_bn0: resnet.init_dist_weights(model) # Sets batchnorm std to 0
    if args.fp16: model = network_to_half(model)
    best_prec5 = 93 # only save models over 92%. Otherwise it stops to save every time

    # Load model from checkpoint. This must happen distributed as model is saved without it
    if args.resume:
        checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.local_rank))
        model.load_state_dict(checkpoint['state_dict'])
        args.start_epoch = checkpoint['epoch']
        best_prec5 = checkpoint['best_prec5']

    if args.c10d:
        model = distributed_c10d._DistributedDataParallelC10d(model, process_group, device_ids=[args.local_rank], output_device=args.local_rank)
        c10d_sanity_check()
    elif args.distributed: model = nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)

    global model_params, master_params
    if args.fp16: model_params, master_params = prep_param_lists(model)
    else: model_params = master_params = model.parameters()

    optim_params = experimental_utils.bnwd_optim_params(model, model_params, master_params) if args.no_bn_wd else master_params

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(optim_params, 0, momentum=args.momentum, weight_decay=args.weight_decay) # start with 0 lr. Scheduler will change this later
    if args.resume: # we must resume optimizer params separately
        checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.local_rank))
        optimizer.load_state_dict(checkpoint['optimizer'])

    # Load data data manager and lr scheduler from phases
    phases = eval(args.phases)
    print("Creating data loaders (this could take 6-12 minutes)")
    dm = DataManager([p for p in phases if 'bs' in p])
    scheduler = Scheduler(optimizer, [p for p in phases if 'lr' in p], args.scale_lr)

    start_time = datetime.now() # Loading start to after everything is loaded
    if args.evaluate: return validate(dm.val_dl, model, criterion, 0, start_time)

    if args.distributed:
        print('Syncing machines before training')
        sum_tensor(torch.tensor([1.0]).float().cuda())

    print("Begin training")
    estart = time.time()
    for epoch in range(args.start_epoch, scheduler.tot_epochs):
        estart = time.time()
        dm.set_epoch(epoch)

        train(dm.trn_dl, model, criterion, optimizer, scheduler, epoch)
        if args.prof: break
        prec5 = validate(dm.val_dl, model, criterion, epoch, start_time)

        is_best = prec5 > best_prec5
        best_prec5 = max(prec5, best_prec5)
        if args.local_rank == 0:
            if is_best: save_checkpoint(epoch, model, best_prec5, optimizer, is_best=True, filename='model_best.pth.tar')
            phase = dm.get_phase(epoch)
            if phase:save_checkpoint(epoch, model, best_prec5, optimizer, filename=f'sz{phase["bs"]}_checkpoint.path.tar')

    event_writer.export_scalars_to_json(args.logdir+'/scalars.json')
    event_writer.close()