def __init__(self): super(AudioDecoder, self).__init__() self.hc_blocks = nn.ModuleList([ norm( ll.CausalConv1d(args.Cx * 2, args.Cy, 1, activation_fn=torch.relu)) ]) self.hc_blocks.extend([ norm(ll.CausalHighwayConv1d(args.Cy, args.Cy, 3, dilation=3**i)) for i in range(4) ]) self.hc_blocks.extend([ norm(ll.CausalHighwayConv1d(args.Cy, args.Cy, 3, dilation=1)) for _ in range(2) ]) self.hc_blocks.extend([ norm( ll.CausalConv1d(args.Cy, args.Cy, 1, dilation=1, activation_fn=torch.relu)) for _ in range(3) ]) self.hc_blocks.extend([ norm(ll.CausalConv1d(args.Cy, args.n_mels, 1, dilation=1)) ]) # down #filters to dotproduct K, V
def __init__(self, inChannel, outChannel, kernelSize, padding, dilation, activationF=None, weightNorm=False): #nn.conv1d(in_channels, out_channels, kernel size, stride, padding, # dilation, ...) # super(Cv, self).__init__() padDic = { "same": (kernelSize - 1) * dilation // 2, "causal": (kernelSize - 1) * dilation, "none": 0 } self.pad = padding.lower() self.padValue = padDic[self.pad] self.kernelSize = kernelSize self.dilation = dilation self.convOne = nn.Conv1d(in_channels=inChannel, out_channels=outChannel, kernel_size=kernelSize, stride=1, padding=self.padValue, dilation=dilation) if weightNorm: self.convOne = norm(self.convOne) self.activationF = activationF self.clear_buffer()
def __init__(self, inChannel, outChannel, kernelSize, padding, dilation, activationF=None, weightNorm=False): super(Dc, self).__init__() padDic = { "same": dilation * (kernelSize - 1) // 2, "causal": dilation * (kernelSize - 1), "none": 0 } self.pad = padding.lower() self.padValue = padDic[self.pad] self.transposedCv = nn.ConvTranspose1d(in_channels=inChannel, out_channels=outChannel, kernel_size=kernelSize, stride=2, padding=self.padValue, dilation=dilation) if weightNorm: self.convOne = norm(self.convOne) self.activationF = activationF
def __init__(self): super(TextEncoder, self).__init__() self.hc_blocks = nn.ModuleList([ norm( ll.Conv1d(args.Ce, args.Cx * 2, 1, padding='same', activation_fn=torch.relu)) ]) # filter up to split into K, V self.hc_blocks.extend([ norm( ll.Conv1d(args.Cx * 2, args.Cx * 2, 1, padding='same', activation_fn=None)) ]) self.hc_blocks.extend([ norm( ll.HighwayConv1d(args.Cx * 2, args.Cx * 2, 3, dilation=3**i, padding='same')) for _ in range(2) for i in range(4) ]) self.hc_blocks.extend([ norm( ll.HighwayConv1d(args.Cx * 2, args.Cx * 2, 3, dilation=1, padding='same')) for i in range(2) ]) self.hc_blocks.extend([ norm( ll.HighwayConv1d(args.Cx * 2, args.Cx * 2, 1, dilation=1, padding='same')) for i in range(2) ])
def __init__(self, d_in, d_out, d_hidden): super(AudioEncoder, self).__init__() self.hc_blocks = nn.ModuleList([ norm(ll.CausalConv1d(d_in, d_hidden, 1, activation_fn=torch.relu)) ]) self.hc_blocks.extend([ norm( ll.CausalConv1d(d_hidden, d_hidden, 1, activation_fn=torch.relu)) for _ in range(2) ]) self.hc_blocks.extend([ norm(ll.CausalHighwayConv1d( d_hidden, d_hidden, 3, dilation=3**i)) # i is in [[0,1,2,3],[0,1,2,3]] for _ in range(2) for i in range(4) ]) self.hc_blocks.extend([ norm(ll.CausalHighwayConv1d(d_hidden, d_out, 3, dilation=3)) for i in range(2) ])
def __init__(self): super(AudioEncoder, self).__init__() self.hc_blocks = nn.ModuleList([ norm( mm.CausalConv1d(args.n_mels, args.Cx, 1, activation_fn=torch.relu)) ]) self.hc_blocks.extend([ norm(mm.CausalConv1d(args.Cx, args.Cx, 1, activation_fn=torch.relu)) for _ in range(2) ]) self.hc_blocks.extend([ norm(mm.CausalHighwayConv1d( args.Cx, args.Cx, 3, dilation=3**i)) # i is in [[0,1,2,3],[0,1,2,3]] for _ in range(2) for i in range(4) ]) self.hc_blocks.extend([ norm(mm.CausalHighwayConv1d(args.Cx, args.Cx, 3, dilation=3)) for i in range(2) ])
def __init__(self): super(SSRN, self).__init__() self.name = 'SSRN' # (N, n_mels, Ty/r) -> (N, Cs, Ty/r) self.hc_blocks = nn.ModuleList([ norm(ll.Conv1d(args.n_mels, args.Cs, 1, activation_fn=torch.relu)) ]) self.hc_blocks.extend([ norm(ll.HighwayConv1d(args.Cs, args.Cs, 3, dilation=3**i)) for i in range(2) ]) # (N, Cs, Ty/r*2) -> (N, Cs, Ty/r*2) self.hc_blocks.extend([ norm(ll.ConvTranspose1d(args.Cs, args.Cs, 4, stride=2, padding=1)) ]) self.hc_blocks.extend([ norm(ll.HighwayConv1d(args.Cs, args.Cs, 3, dilation=3**i)) for i in range(2) ]) # (N, Cs, Ty/r*2) -> (N, Cs, Ty/r*4==Ty) self.hc_blocks.extend([ norm(ll.ConvTranspose1d(args.Cs, args.Cs, 4, stride=2, padding=1)) ]) self.hc_blocks.extend([ norm(ll.HighwayConv1d(args.Cs, args.Cs, 3, dilation=3**i)) for i in range(2) ]) # (N, Cs, Ty) -> (N, Cs*2, Ty) self.hc_blocks.extend([norm(ll.Conv1d(args.Cs, args.Cs * 2, 1))]) self.hc_blocks.extend([ norm(ll.HighwayConv1d(args.Cs * 2, args.Cs * 2, 3, dilation=1)) for i in range(2) ]) # (N, Cs*2, Ty) -> (N, n_mags, Ty) self.hc_blocks.extend([norm(ll.Conv1d(args.Cs * 2, args.n_mags, 1))]) self.hc_blocks.extend([ norm( ll.Conv1d(args.n_mags, args.n_mags, 1, activation_fn=torch.relu)) for i in range(2) ]) self.hc_blocks.extend([norm(ll.Conv1d(args.n_mags, args.n_mags, 1))])