# Import the libraries we need for this lab

import torch.nn as nn
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
torch.manual_seed(2)

#Logistic Function----------------------------------
#Create a tensor ranging from -10 to 10: 
# Create a tensor
z = torch.arange(-10, 10, 0.1).view(-1, 1)

#When you use sequential, you can create a sigmoid object: 
# Create a sigmoid object
sig = nn.Sigmoid()

#Apply the element-wise function Sigmoid with the object:
# Make a prediction of sigmoid function
yhat = sig(z)

# Plot the result
plt.plot(z.numpy(),yhat.numpy())
plt.xlabel('z')
plt.ylabel('yhat')

#For custom modules, call the sigmoid from the torch (nn.functional for the old version), which applies the element-wise sigmoid from 
#the function module and plots the results:
# Use the build in function to predict the result
yhat = torch.sigmoid(z)
plt.plot(z.numpy(), yhat.numpy())
예제 #2
0
print('Creating model')
NUM_CLASSES = args.number_of_classes

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, NUM_CLASSES)

if torch.cuda.device_count() > 1 and args.use_cuda:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
    model_ft = nn.DataParallel(model_ft)

model_ft = model_ft.to(device)

act = nn.Sigmoid().to(device)

criterion = nn.BCELoss().to(device)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), args.learning_rate,
                         args.momentum)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, args.step_size,
                                       args.gamma)

dataloaders = {'train': train_loader, 'val': val_loader, 'test': test_loader}

dataset_sizes = {
    'train': len(train_dataset),
예제 #3
0
def validate(val_loader,
             model,
             criterion,
             scheduler,
             source_resl,
             target_resl):
                                
    global valid_minib_counter
    global logger
    
    # scheduler.batch_step()    
    
    batch_time = AverageMeter()
    losses = AverageMeter()
    f1_scores = AverageMeter()
    map_scores_wt = AverageMeter()
    map_scores_wt_seed = AverageMeter()    
    
    # switch to evaluate mode
    model.eval()

    # sigmoid for f1 calculation and illustrations
    m = nn.Sigmoid()      
    
    end = time.time()
    for i, (input, target, or_resl, target_resl,img_sample) in enumerate(val_loader):
        
        # permute to pytorch format
        input = input.permute(0,3,1,2).contiguous().float().cuda(async=True)
        # take only mask and boundary at first
        target = target[:,:,:,0:args.channels].permute(0,3,1,2).contiguous().float().cuda(async=True)

        input_var = torch.autograd.Variable(input, volatile=True)
        target_var = torch.autograd.Variable(target, volatile=True)

        # compute output
        output = model(input_var)
                                            
        loss = criterion(output, target_var)
        
        # go over all of the predictions
        # apply the transformation to each mask
        # calculate score for each of the images
        
        averaged_maps_wt = []
        averaged_maps_wt_seed = []
        y_preds_wt = []
        y_preds_wt_seed = []
        energy_levels = []
            
        for j,pred_output in enumerate(output):
            or_w = or_resl[0][j]
            or_h = or_resl[1][j]
            
            # I keep only the latest preset
            
            pred_mask = m(pred_output[0,:,:]).data.cpu().numpy()
            pred_mask1 = m(pred_output[1,:,:]).data.cpu().numpy()
            pred_mask2 = m(pred_output[2,:,:]).data.cpu().numpy()
            pred_mask3 = m(pred_output[3,:,:]).data.cpu().numpy()
            pred_mask0 = m(pred_output[4,:,:]).data.cpu().numpy()
            pred_border = m(pred_output[5,:,:]).data.cpu().numpy()
            # pred_distance = m(pred_output[5,:,:]).data.cpu().numpy()            
            pred_vector0 = pred_output[6,:,:].data.cpu().numpy()
            pred_vector1 = pred_output[7,:,:].data.cpu().numpy()             

            pred_mask = cv2.resize(pred_mask, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_mask1 = cv2.resize(pred_mask1, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_mask2 = cv2.resize(pred_mask2, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_mask3 = cv2.resize(pred_mask3, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_mask0 = cv2.resize(pred_mask0, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            # pred_distance = cv2.resize(pred_distance, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_border = cv2.resize(pred_border, (or_h,or_w), interpolation=cv2.INTER_LINEAR)
            pred_vector0 = cv2.resize(pred_vector0, (or_h,or_w), interpolation=cv2.INTER_LINEAR) 
            pred_vector1 = cv2.resize(pred_vector1, (or_h,or_w), interpolation=cv2.INTER_LINEAR)             
            
            # predict average energy by summing all the masks up 
            pred_energy = (pred_mask+pred_mask1+pred_mask2+pred_mask3+pred_mask0)/5*255
            pred_mask_255 = np.copy(pred_mask) * 255            

            # read the original masks for metric evaluation
            mask_glob = glob.glob('../data/stage1_train/{}/masks/*.png'.format(img_sample[j]))
            gt_masks = imread_collection(mask_glob).concatenate()

            # simple wt
            y_pred_wt = wt_baseline(pred_mask_255, args.ths)
            
            # wt with seeds
            y_pred_wt_seed = wt_seeds(pred_mask_255,pred_energy,args.ths)            
            
            map_wt = calculate_ap(y_pred_wt, gt_masks)
            map_wt_seed = calculate_ap(y_pred_wt_seed, gt_masks)
            
            averaged_maps_wt.append(map_wt[1])
            averaged_maps_wt_seed.append(map_wt_seed[1])

            # apply colormap for easier tracking
            y_pred_wt = cv2.applyColorMap((y_pred_wt / y_pred_wt.max() * 255).astype('uint8'), cv2.COLORMAP_JET) 
            y_pred_wt_seed = cv2.applyColorMap((y_pred_wt_seed / y_pred_wt_seed.max() * 255).astype('uint8'), cv2.COLORMAP_JET)  
            
            y_preds_wt.append(y_pred_wt)
            y_preds_wt_seed.append(y_pred_wt_seed)
            energy_levels.append(pred_energy)
            
            # print('MAP for sample {} is {}'.format(img_sample[j],m_ap))
        
        y_preds_wt = np.asarray(y_preds_wt)
        y_preds_wt_seed = np.asarray(y_preds_wt_seed)
        energy_levels = np.asarray(energy_levels)
        
        averaged_maps_wt = np.asarray(averaged_maps_wt).mean()
        averaged_maps_wt_seed = np.asarray(averaged_maps_wt_seed).mean()

        #============ TensorBoard logging ============#                                            
        if args.tensorboard_images:
            if i == 0:
                if args.channels == 5:
                    info = {
                        'images': to_np(input[:2,:,:,:]),
                        'gt_mask': to_np(target[:2,0,:,:]),
                        'gt_mask1': to_np(target[:2,1,:,:]),
                        'gt_mask2': to_np(target[:2,2,:,:]),
                        'gt_mask3': to_np(target[:2,3,:,:]), 
                        'gt_mask0': to_np(target[:2,4,:,:]),
                        'pred_mask': to_np(m(output.data[:2,0,:,:])),
                        'pred_mask1': to_np(m(output.data[:2,1,:,:])),
                        'pred_mask2': to_np(m(output.data[:2,2,:,:])),
                        'pred_mask3': to_np(m(output.data[:2,3,:,:])),
                        'pred_mask0': to_np(m(output.data[:2,4,:,:])),
                        'pred_energy': energy_levels[:2,:,:], 
                        'pred_wt': y_preds_wt[:2,:,:],
                        'pred_wt_seed': y_preds_wt_seed[:2,:,:,:],
                    }
                    for tag, images in info.items():
                        logger.image_summary(tag, images, valid_minib_counter)                   
                elif args.channels == 6:
                    info = {
                        'images': to_np(input[:2,:,:,:]),
                        'gt_mask': to_np(target[:2,0,:,:]),
                        'gt_mask1': to_np(target[:2,1,:,:]),
                        'gt_mask2': to_np(target[:2,2,:,:]),
                        'gt_mask3': to_np(target[:2,3,:,:]), 
                        'gt_mask0': to_np(target[:2,4,:,:]),
                        'gt_mask_distance': to_np(target[:2,5,:,:]),
                        'pred_mask': to_np(m(output.data[:2,0,:,:])),
                        'pred_mask1': to_np(m(output.data[:2,1,:,:])),
                        'pred_mask2': to_np(m(output.data[:2,2,:,:])),
                        'pred_mask3': to_np(m(output.data[:2,3,:,:])),
                        'pred_mask0': to_np(m(output.data[:2,4,:,:])),
                        'pred_distance': to_np(m(output.data[:2,5,:,:])),
                        'pred_energy': energy_levels[:2,:,:], 
                        'pred_wt': y_preds_wt[:2,:,:],
                        'pred_wt_seed': y_preds_wt_seed[:2,:,:,:],
                    }
                    for tag, images in info.items():
                        logger.image_summary(tag, images, valid_minib_counter)
                elif args.channels == 7:
                    info = {
                        'images': to_np(input[:2,:,:,:]),
                        'gt_mask': to_np(target[:2,0,:,:]),
                        'gt_mask1': to_np(target[:2,1,:,:]),
                        'gt_mask2': to_np(target[:2,2,:,:]),
                        'gt_mask3': to_np(target[:2,3,:,:]), 
                        'gt_mask0': to_np(target[:2,4,:,:]),
                        'gt_mask_distance': to_np(target[:2,5,:,:]),
                        'gt_border': to_np(target[:2,6,:,:]),                        
                        'pred_mask': to_np(m(output.data[:2,0,:,:])),
                        'pred_mask1': to_np(m(output.data[:2,1,:,:])),
                        'pred_mask2': to_np(m(output.data[:2,2,:,:])),
                        'pred_mask3': to_np(m(output.data[:2,3,:,:])),
                        'pred_mask0': to_np(m(output.data[:2,4,:,:])),
                        'pred_distance': to_np(m(output.data[:2,5,:,:])),
                        'pred_border': to_np(m(output.data[:2,6,:,:])),                        
                        'pred_energy': energy_levels[:2,:,:], 
                        'pred_wt': y_preds_wt[:2,:,:],
                        'pred_wt_seed': y_preds_wt_seed[:2,:,:,:],
                    }
                    for tag, images in info.items():
                        logger.image_summary(tag, images, valid_minib_counter)
                elif args.channels == 8:
                    info = {
                        'images': to_np(input[:2,:,:,:]),
                        'gt_mask': to_np(target[:2,0,:,:]),
                        'gt_mask1': to_np(target[:2,1,:,:]),
                        'gt_mask2': to_np(target[:2,2,:,:]),
                        'gt_mask3': to_np(target[:2,3,:,:]), 
                        'gt_mask0': to_np(target[:2,4,:,:]),
                        'gt_border': to_np(target[:2,5,:,:]),   
                        'gt_vectors': to_np(target[:2,6,:,:]+target[:2,7,:,:]), # simple hack - just sum the vectors
                        'pred_mask': to_np(m(output.data[:2,0,:,:])),
                        'pred_mask1': to_np(m(output.data[:2,1,:,:])),
                        'pred_mask2': to_np(m(output.data[:2,2,:,:])),
                        'pred_mask3': to_np(m(output.data[:2,3,:,:])),
                        'pred_mask0': to_np(m(output.data[:2,4,:,:])),
                        'pred_border': to_np(m(output.data[:2,5,:,:])),
                        'pred_vectors': to_np(output.data[:2,6,:,:]+output.data[:2,7,:,:]),                         
                        'pred_energy': energy_levels[:2,:,:], 
                        'pred_wt': y_preds_wt[:2,:,:],
                        'pred_wt_seed': y_preds_wt_seed[:2,:,:,:],
                    }
                    for tag, images in info.items():
                        logger.image_summary(tag, images, valid_minib_counter)                          
                        

                        
        # calcuale f1 scores only on inner cell masks
        # weird pytorch numerical issue when converting to float
        target_f1 = (target_var.data[:,0:1,:,:]>args.ths)*1        
        f1_scores_batch = batch_f1_score(output = m(output.data[:,0:1,:,:]),
                                   target = target_f1,
                                   threshold=args.ths)

        # measure accuracy and record loss
        losses.update(loss.data[0], input.size(0))
        f1_scores.update(f1_scores_batch, input.size(0))
        map_scores_wt.update(averaged_maps_wt, input.size(0))  
        map_scores_wt_seed.update(averaged_maps_wt_seed, input.size(0)) 

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        #============ TensorBoard logging ============#
        # Log the scalar values        
        if args.tensorboard:
            info = {
                'valid_loss': losses.val,
                'f1_score_val': f1_scores.val, 
                'map_wt': averaged_maps_wt,
                'map_wt_seed': averaged_maps_wt_seed,
            }
            for tag, value in info.items():
                logger.scalar_summary(tag, value, valid_minib_counter)            
        
        valid_minib_counter += 1
        
        if i % args.print_freq == 0:
            print('Test: [{0}/{1}]\t'
                  'Time  {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss  {loss.val:.4f} ({loss.avg:.4f})\t'
                  'F1    {f1_scores.val:.4f} ({f1_scores.avg:.4f})\t'
                  'MAP1  {map_scores_wt.val:.4f} ({map_scores_wt.avg:.4f})\t'
                  'MAP2  {map_scores_wt_seed.val:.4f} ({map_scores_wt_seed.avg:.4f})\t'.format(
                   i, len(val_loader), batch_time=batch_time,
                      loss=losses,
                      f1_scores=f1_scores,
                      map_scores_wt=map_scores_wt,map_scores_wt_seed=map_scores_wt_seed))

    print(' * Avg Val  Loss {loss.avg:.4f}'.format(loss=losses))
    print(' * Avg F1   Score {f1_scores.avg:.4f}'.format(f1_scores=f1_scores))
    print(' * Avg MAP1 Score {map_scores_wt.avg:.4f}'.format(map_scores_wt=map_scores_wt)) 
    print(' * Avg MAP2 Score {map_scores_wt_seed.avg:.4f}'.format(map_scores_wt_seed=map_scores_wt_seed)) 

    return losses.avg, f1_scores.avg, map_scores_wt.avg,map_scores_wt_seed.avg
 def __init__(self):
     super(_Gate, self).__init__()
     self.one = torch.tensor([1.], requires_grad=False, device='cuda:0')
     self.fc = nn.Linear(1, 1, bias=False)
     self.fc.weight.data.fill_(0.)
     self.sig = nn.Sigmoid()
예제 #5
0
    def __init__(self, num_classes=10):
        super(UNet, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(8), nn.ReLU())

        self.layer2 = nn.Sequential(
            nn.Conv2d(8, 8, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(8), nn.ReLU())

        self.layer3 = nn.Sequential(nn.MaxPool2d(kernel_size=2))

        self.layer4 = nn.Sequential(
            nn.Conv2d(8, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16), nn.ReLU())

        self.layer5 = nn.Sequential(
            nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16), nn.ReLU())

        self.layer6 = nn.Sequential(nn.MaxPool2d(kernel_size=2))

        self.layer7 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32), nn.ReLU())

        self.layer8 = nn.Sequential(
            nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32), nn.ReLU())

        self.layer9 = nn.Sequential(nn.MaxPool2d(kernel_size=2))

        self.layer10 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU())

        self.layer11 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU())

        self.layer12 = nn.Sequential(nn.MaxPool2d(kernel_size=2))

        self.layer13 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128), nn.ReLU())

        self.layer14 = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128), nn.ReLU())

        self.layer15 = nn.Sequential(
            nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2, padding=0),
            nn.BatchNorm2d(64), nn.ReLU())

        self.layer16 = nn.Sequential(
            nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU())

        self.layer17 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64), nn.ReLU())

        self.layer18 = nn.Sequential(
            nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2, padding=0),
            nn.BatchNorm2d(32), nn.ReLU())

        self.layer19 = nn.Sequential(
            nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32), nn.ReLU())

        self.layer20 = nn.Sequential(
            nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32), nn.ReLU())

        self.layer21 = nn.Sequential(
            nn.ConvTranspose2d(32, 16, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(16), nn.ReLU())

        self.layer22 = nn.Sequential(
            nn.Conv2d(48, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16), nn.ReLU())

        self.layer23 = nn.Sequential(
            nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16), nn.ReLU())

        self.layer24 = nn.Sequential(
            nn.ConvTranspose2d(16, 8, kernel_size=4, stride=4, padding=0),
            nn.BatchNorm2d(8), nn.ReLU())

        self.layer25 = nn.Sequential(
            nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(8), nn.ReLU())

        self.layer26 = nn.Sequential(
            nn.Conv2d(8, 8, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(8), nn.ReLU())

        self.layer27 = nn.Sequential(
            nn.Conv2d(8, 1, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(1), nn.Sigmoid())
예제 #6
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 replace_stride_with_dilation=None,
                 norm_layer=None,
                 end2end=True):
        super(AFMResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        """
        weight
        """
        self.fc_a = nn.Linear(512 * block.expansion,
                              int(384 * block.expansion / 4))
        self.fc_b = nn.Linear(512 * block.expansion,
                              int(384 * block.expansion / 4))

        self.fc_weight = nn.Linear(int(384 * block.expansion / 4), 1)
        self.fc_weight_sigmoid = nn.Sigmoid()
        """
        classifier
        """
        self.fc_classifier = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677

        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)
예제 #7
0
    def __init__(self,
                 word_to_ix,
                 hidden_dim=128,
                 num_heads=2,
                 dim_feedforward=2048,
                 dim_k=96,
                 dim_v=96,
                 dim_q=96,
                 max_length=43):
        '''
        :param word_to_ix: dictionary mapping words to unique indices
        :param hidden_dim: the dimensionality of the output embeddings that go into the final layer
        :param num_heads: the number of Transformer heads to use
        :param dim_feedforward: the dimension of the feedforward network model
        :param dim_k: the dimensionality of the key vectors
        :param dim_q: the dimensionality of the query vectors
        :param dim_v: the dimensionality of the value vectors
        '''
        super(ClassificationTransformer, self).__init__()
        assert hidden_dim % num_heads == 0

        self.num_heads = num_heads
        self.word_embedding_dim = hidden_dim
        self.hidden_dim = hidden_dim
        self.dim_feedforward = dim_feedforward
        self.max_length = max_length
        self.vocab_size = len(word_to_ix)

        self.dim_k = dim_k
        self.dim_v = dim_v
        self.dim_q = dim_q

        seed_torch(0)

        ##############################################################################
        # Deliverable 1: Initialize what you need for the embedding lookup (1 line). #
        # Hint: you will need to use the max_length parameter above.                 #
        ##############################################################################
        self.token_embed = nn.Embedding(self.vocab_size, self.hidden_dim)
        self.position_embed = nn.Embedding(self.max_length, self.hidden_dim)
        ##############################################################################
        #                               END OF YOUR CODE                             #
        ##############################################################################

        ##############################################################################
        # Deliverable 2: Initializations for multi-head self-attention.              #
        # You don't need to do anything here. Do not modify this code.               #
        ##############################################################################

        # Head #1
        self.k1 = nn.Linear(self.hidden_dim, self.dim_k)
        self.v1 = nn.Linear(self.hidden_dim, self.dim_v)
        self.q1 = nn.Linear(self.hidden_dim, self.dim_q)

        # Head #2
        self.k2 = nn.Linear(self.hidden_dim, self.dim_k)
        self.v2 = nn.Linear(self.hidden_dim, self.dim_v)
        self.q2 = nn.Linear(self.hidden_dim, self.dim_q)

        self.softmax = nn.Softmax(dim=2)
        self.attention_head_projection = nn.Linear(self.dim_v * self.num_heads,
                                                   self.hidden_dim)
        self.norm_mh = nn.LayerNorm(self.hidden_dim)

        ##############################################################################
        # Deliverable 3: Initialize what you need for the feed-forward layer.        #
        # Don't forget the layer normalization.                                      #
        ##############################################################################
        self.fc1 = nn.Linear(self.hidden_dim, self.dim_feedforward)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(self.dim_feedforward, self.hidden_dim)
        ##############################################################################
        #                               END OF YOUR CODE                             #
        ##############################################################################

        ##############################################################################
        # Deliverable 4: Initialize what you need for the final layer (1-2 lines).   #
        ##############################################################################
        self.finalfc = nn.Linear(self.hidden_dim, 1)
        self.sigmoid = nn.Sigmoid()
예제 #8
0
 def make_activation_net(token: Token) -> nn.Module:
     return nn.Sequential(
         nn.Linear(D_agent_state, 1),
         nn.Sigmoid(),
     )
예제 #9
0
파일: Senti.py 프로젝트: wangjs9/ecs
 def __init__(self, dec_hidden_size):
     super(Filter, self).__init__()
     self.arfa = nn.Linear(dec_hidden_size, 1, bias=True)
     self.sigmoid = nn.Sigmoid()
예제 #10
0
파일: main.py 프로젝트: Mr-KouZhe/kouzhe
 def __init__(self):
     super(Loss, self).__init__()
     self.classify_loss = nn.BCELoss()
     self.sigmoid = nn.Sigmoid()
     self.regress_loss = nn.SmoothL1Loss()
예제 #11
0
파일: net.py 프로젝트: ashishpatel26/FPNet
    def __init__(self, in_channels, out_channels):

        super(ConvBlock_mix2, self).__init__()
        #         self.conv1 = nn.Conv2d(in_channels=in_channels,
        #                               out_channels=out_channels,
        #                               kernel_size=(3, 3), stride=(1, 1),
        #                               padding=(1, 1), bias=False)

        #         self.conv2 = nn.Conv2d(in_channels=out_channels,
        #                              out_channels=out_channels,
        #                                  kernel_size=(3, 3), stride=(1, 1),
        #                              padding=(1, 1), bias=False)
        self.conv1 = Conv2dSame(in_channels=in_channels,
                                out_channels=out_channels,
                                kernel_size=3,
                                bias=False)

        self.conv2 = Conv2dSame(in_channels=out_channels,
                                out_channels=out_channels,
                                kernel_size=3,
                                bias=False)

        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        if out_channels == 64:
            #             self.globalAvgPool = nn.AvgPool2d((100,40), stride=1)
            self.globalAvgPool2 = nn.AvgPool2d((100, 64), stride=1)
            self.globalAvgPool3 = nn.AvgPool2d((64, 40), stride=1)
            self.fc1_2 = nn.Linear(in_features=40, out_features=40)
            self.fc2_2 = nn.Linear(in_features=40, out_features=40)
        elif out_channels == 128:
            #             self.globalAvgPool = nn.AvgPool2d((50,20), stride=1)
            self.globalAvgPool2 = nn.AvgPool2d((50, 128), stride=1)
            self.globalAvgPool3 = nn.AvgPool2d((128, 20), stride=1)
            self.fc1_2 = nn.Linear(in_features=20, out_features=20)
            self.fc2_2 = nn.Linear(in_features=20, out_features=20)
        elif out_channels == 256:
            #             self.globalAvgPool = nn.AvgPool2d((25,10), stride=1)
            self.globalAvgPool2 = nn.AvgPool2d((25, 256), stride=1)
            self.globalAvgPool3 = nn.AvgPool2d((256, 10), stride=1)
            self.fc1_2 = nn.Linear(in_features=10, out_features=10)
            self.fc2_2 = nn.Linear(in_features=10, out_features=10)
        elif out_channels == 512:
            #             self.globalAvgPool = nn.AvgPool2d((12,5), stride=1)
            self.globalAvgPool2 = nn.AvgPool2d((12, 512), stride=1)
            self.globalAvgPool3 = nn.AvgPool2d((512, 5), stride=1)
            self.fc1_2 = nn.Linear(in_features=5, out_features=5)
            self.fc2_2 = nn.Linear(in_features=5, out_features=5)


#         self.fc1 = nn.Linear(in_features=out_channels, out_features=round(out_channels / 16))
#         self.fc2 = nn.Linear(in_features=round(out_channels / 16), out_features=out_channels)
        self.lstm = nn.LSTM(input_size=1,
                            hidden_size=1,
                            num_layers=1,
                            batch_first=True,
                            bidirectional=False)
        self.sigmoid = nn.Sigmoid()
        self.sigmoid2 = nn.Sigmoid()
        self.downsample = conv1x1(in_channels, out_channels)
        self.bn = nn.BatchNorm2d(out_channels)
        self.init_weights()
예제 #12
0
    def __init__(self,
                 latent_dim,
                 seq_len,
                 hidden_dim,
                 n_layers,
                 rnn='LSTM',
                 n_feats=3,
                 dropout=0.,
                 return_norm=True,
                 latent_mode='repeat'):
        super(VAE_LSTM, self).__init__()

        self.latent_dim = latent_dim
        self.return_norm = return_norm
        self.seq_len = seq_len
        self.latent_mode = latent_mode

        self.latent_convt1 = nn.Sequential(
            nn.ConvTranspose1d(latent_dim,
                               latent_dim,
                               kernel_size=seq_len,
                               dilation=1), nn.ReLU())
        self.latent_linear = nn.Sequential(
            nn.Linear(latent_dim, latent_dim * seq_len), nn.ReLU())

        ## batch_first --> [batch, seq, feature]
        if rnn == 'LSTM':
            self.enc_lstm = nn.LSTM(n_feats,
                                    hidden_dim,
                                    n_layers,
                                    batch_first=True,
                                    dropout=dropout,
                                    bidirectional=False)
            self.dec_lstm = nn.LSTM(latent_dim,
                                    hidden_dim,
                                    n_layers,
                                    batch_first=True,
                                    dropout=dropout,
                                    bidirectional=False)
        elif rnn == 'GRU':
            self.enc_lstm = nn.GRU(n_feats,
                                   hidden_dim,
                                   n_layers,
                                   batch_first=True,
                                   dropout=dropout,
                                   bidirectional=False)
            self.dec_lstm = nn.GRU(latent_dim,
                                   hidden_dim,
                                   n_layers,
                                   batch_first=True,
                                   dropout=dropout,
                                   bidirectional=False)

        self.enc_linear1 = nn.Linear(seq_len * hidden_dim, latent_dim)
        self.enc_linear2 = nn.Linear(seq_len * hidden_dim, latent_dim)

        self.dec_linear = nn.Linear(hidden_dim, n_feats)

        self.init_weights()

        self.tanh = nn.Tanh()
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
예제 #13
0
def skip(num_input_channels=2,
         num_output_channels=3,
         num_channels_down=[16, 32, 64, 128, 128],
         num_channels_up=[16, 32, 64, 128, 128],
         num_channels_skip=[4, 4, 4, 4, 4],
         filter_size_down=3,
         filter_size_up=3,
         filter_skip_size=1,
         need_sigmoid=True,
         need_bias=True,
         pad='zero',
         upsample_mode='nearest',
         downsample_mode='stride',
         act_fun='LeakyReLU',
         need1x1_up=True):
    """Assembles encoder-decoder with skip connections.

    Arguments:
        act_fun: Either string 'LeakyReLU|Swish|ELU|none' or module (e.g. nn.ReLU)
        pad (string): zero|reflection (default: 'zero')
        upsample_mode (string): 'nearest|bilinear' (default: 'nearest')
        downsample_mode (string): 'stride|avg|max|lanczos2' (default: 'stride')

    """
    assert len(num_channels_down) \
        == len(num_channels_up) == len(num_channels_skip)

    n_scales = len(num_channels_down)

    if not (isinstance(upsample_mode, list)
            or isinstance(upsample_mode, tuple)):
        upsample_mode = [upsample_mode] * n_scales

    if not (isinstance(downsample_mode, list)
            or isinstance(downsample_mode, tuple)):
        downsample_mode = [downsample_mode] * n_scales

    if not (isinstance(filter_size_down, list)
            or isinstance(filter_size_down, tuple)):
        filter_size_down = [filter_size_down] * n_scales

    if not (isinstance(filter_size_up, list)
            or isinstance(filter_size_up, tuple)):
        filter_size_up = [filter_size_up] * n_scales

    last_scale = n_scales - 1

    # cur_depth = None

    model = nn.Sequential()
    model_tmp = model

    input_depth = num_input_channels
    for i in range(len(num_channels_down)):

        deeper = nn.Sequential()
        skip = nn.Sequential()

        if num_channels_skip[i] != 0:
            model_tmp.add(Concat(1, skip, deeper))
        else:
            model_tmp.add(deeper)

        model_tmp.add(
            bn(num_channels_skip[i] + (num_channels_up[i + 1] if i < last_scale
                                       else num_channels_down[i])))

        if num_channels_skip[i] != 0:
            skip.add(
                conv(input_depth,
                     num_channels_skip[i],
                     filter_skip_size,
                     bias=need_bias,
                     pad=pad))
            skip.add(bn(num_channels_skip[i]))
            skip.add(act(act_fun))

        # skip.add(Concat(2, GenNoise(nums_noise[i]), skip_part))

        deeper.add(
            conv(input_depth,
                 num_channels_down[i],
                 filter_size_down[i],
                 2,
                 bias=need_bias,
                 pad=pad,
                 downsample_mode=downsample_mode[i]))

        deeper.add(bn(num_channels_down[i]))
        deeper.add(act(act_fun))

        deeper.add(
            conv(num_channels_down[i],
                 num_channels_down[i],
                 filter_size_down[i],
                 bias=need_bias,
                 pad=pad))
        deeper.add(bn(num_channels_down[i]))
        deeper.add(act(act_fun))

        deeper_main = nn.Sequential()

        if i == len(num_channels_down) - 1:
            # The deepest
            k = num_channels_down[i]
        else:
            deeper.add(deeper_main)
            k = num_channels_up[i + 1]

        deeper.add(
            nn.Upsample(scale_factor=2,
                        mode=upsample_mode[i],
                        align_corners=False))

        model_tmp.add(
            conv(num_channels_skip[i] + k,
                 num_channels_up[i],
                 filter_size_up[i],
                 1,
                 bias=need_bias,
                 pad=pad))
        model_tmp.add(bn(num_channels_up[i]))
        model_tmp.add(act(act_fun))

        if need1x1_up:
            model_tmp.add(
                conv(num_channels_up[i],
                     num_channels_up[i],
                     1,
                     bias=need_bias,
                     pad=pad))
            model_tmp.add(bn(num_channels_up[i]))
            model_tmp.add(act(act_fun))

        input_depth = num_channels_down[i]
        model_tmp = deeper_main

    model.add(
        conv(num_channels_up[0],
             num_output_channels,
             1,
             bias=need_bias,
             pad=pad))

    if need_sigmoid:
        model.add(nn.Sigmoid())

    return model
예제 #14
0
    def forward(self, q_ids=None, char_ids=None, word_ids=None, token_type_ids=None, subject_ids=None,
                subject_labels=None,
                object_labels=None, eval_file=None,
                is_eval=False):

        mask = char_ids != 0

        seq_mask = char_ids.eq(0)

        char_emb = self.char_emb(char_ids)
        word_emb = self.word_convert_char(self.word_emb(word_ids))
        # word_emb = self.word_emb(word_ids)
        emb = char_emb + word_emb
        # emb = char_emb
        # subject_encoder = sent_encoder + self.token_entity_emb(token_type_id)
        sent_encoder = self.first_sentence_encoder(emb, seq_mask)

        if not is_eval:
            # subject_encoder = self.token_entity_emb(token_type_ids)
            # context_encoder = bert_encoder + subject_encoder

            sub_start_encoder = batch_gather(sent_encoder, subject_ids[:, 0])
            sub_end_encoder = batch_gather(sent_encoder, subject_ids[:, 1])
            subject = torch.cat([sub_start_encoder, sub_end_encoder], 1)
            context_encoder = self.LayerNorm(sent_encoder, subject)
            context_encoder = self.transformer_encoder(context_encoder.transpose(1, 0),
                                                       src_key_padding_mask=seq_mask).transpose(0, 1)

            sub_preds = self.subject_dense(sent_encoder)
            po_preds = self.po_dense(context_encoder).reshape(char_ids.size(0), -1, self.classes_num, 2)

            subject_loss = self.loss_fct(sub_preds, subject_labels)
            subject_loss = subject_loss.mean(2)
            subject_loss = torch.sum(subject_loss * mask.float()) / torch.sum(mask.float())

            po_loss = self.loss_fct(po_preds, object_labels)
            po_loss = torch.sum(po_loss.mean(3), 2)
            po_loss = torch.sum(po_loss * mask.float()) / torch.sum(mask.float())

            loss = subject_loss + po_loss

            return loss

        else:

            subject_preds = nn.Sigmoid()(self.subject_dense(sent_encoder))
            answer_list = list()
            for qid, sub_pred in zip(q_ids.cpu().numpy(),
                                     subject_preds.cpu().numpy()):
                context = eval_file[qid].context
                start = np.where(sub_pred[:, 0] > 0.5)[0]
                end = np.where(sub_pred[:, 1] > 0.4)[0]
                subjects = []
                for i in start:
                    j = end[end >= i]
                    if i >= len(context):
                        continue
                    if len(j) > 0:
                        j = j[0]
                        if j >= len(context):
                            continue
                        subjects.append((i, j))

                answer_list.append(subjects)

            qid_ids, sent_encoders, pass_ids, subject_ids, token_type_ids = [], [], [], [], []
            for i, subjects in enumerate(answer_list):
                if subjects:
                    qid = q_ids[i].unsqueeze(0).expand(len(subjects))
                    pass_tensor = char_ids[i, :].unsqueeze(0).expand(len(subjects), char_ids.size(1))
                    new_sent_encoder = sent_encoder[i, :, :].unsqueeze(0).expand(len(subjects), sent_encoder.size(1),
                                                                                 sent_encoder.size(2))

                    token_type_id = torch.zeros((len(subjects), char_ids.size(1)), dtype=torch.long)
                    for index, (start, end) in enumerate(subjects):
                        token_type_id[index, start:end + 1] = 1

                    qid_ids.append(qid)
                    pass_ids.append(pass_tensor)
                    subject_ids.append(torch.tensor(subjects, dtype=torch.long))
                    sent_encoders.append(new_sent_encoder)
                    token_type_ids.append(token_type_id)

            if len(qid_ids) == 0:
                # print('len(qid_list)==0:')
                qid_tensor = torch.tensor([-1, -1], dtype=torch.long).to(sent_encoder.device)
                return qid_tensor, qid_tensor, qid_tensor

            # print('len(qid_list)!=========================0:')
            qids = torch.cat(qid_ids).to(sent_encoder.device)
            pass_ids = torch.cat(pass_ids).to(sent_encoder.device)
            sent_encoders = torch.cat(sent_encoders).to(sent_encoder.device)
            # token_type_ids = torch.cat(token_type_ids).to(bert_encoder.device)
            subject_ids = torch.cat(subject_ids).to(sent_encoder.device)

            flag = False
            split_heads = 1024

            sent_encoders_ = torch.split(sent_encoders, split_heads, dim=0)
            pass_ids_ = torch.split(pass_ids, split_heads, dim=0)
            # token_type_ids_ = torch.split(token_type_ids, split_heads, dim=0)
            subject_encoder_ = torch.split(subject_ids, split_heads, dim=0)
            # print('len(qid_list)!=========================1:')
            po_preds = list()
            for i in range(len(subject_encoder_)):
                sent_encoders = sent_encoders_[i]
                # token_type_ids = token_type_ids_[i]
                pass_ids = pass_ids_[i]
                subject_encoder = subject_encoder_[i]

                if sent_encoders.size(0) == 1:
                    flag = True
                    # print('flag = True**********')
                    sent_encoders = sent_encoders.expand(2, sent_encoders.size(1), sent_encoders.size(2))
                    subject_encoder = subject_encoder.expand(2, subject_encoder.size(1))
                    pass_ids = pass_ids.expand(2, pass_ids.size(1))
                # print('len(qid_list)!=========================2:')
                sub_start_encoder = batch_gather(sent_encoders, subject_encoder[:, 0])
                sub_end_encoder = batch_gather(sent_encoders, subject_encoder[:, 1])
                subject = torch.cat([sub_start_encoder, sub_end_encoder], 1)
                context_encoder = self.LayerNorm(sent_encoders, subject)
                context_encoder = self.transformer_encoder(context_encoder.transpose(1, 0),
                                                           src_key_padding_mask=pass_ids.eq(0)).transpose(0, 1)
                # print('len(qid_list)!=========================3')
                # context_encoder = self.LayerNorm(context_encoder)
                po_pred = self.po_dense(context_encoder).reshape(subject_encoder.size(0), -1, self.classes_num, 2)

                if flag:
                    po_pred = po_pred[1, :, :, :].unsqueeze(0)

                po_preds.append(po_pred)

            po_tensor = torch.cat(po_preds).to(qids.device)
            po_tensor = nn.Sigmoid()(po_tensor)
            return qids, subject_ids, po_tensor
예제 #15
0
conv = nn.Conv2d(3, 5, kernel_size=5, stride=2, padding=1)
save_data_and_model("convolution", input, conv)

input = Variable(torch.randn(1, 3, 10, 10))
deconv = nn.ConvTranspose2d(3, 5, kernel_size=5, stride=2, padding=1)
save_data_and_model("deconvolution", input, deconv)

input = Variable(torch.randn(2, 3))
linear = nn.Linear(3, 4, bias=True)
linear.eval()
save_data_and_model("linear", input, linear)

input = Variable(torch.randn(2, 3, 12, 18))
maxpooling_sigmoid = nn.Sequential(
          nn.MaxPool2d(kernel_size=4, stride=2, padding=(1, 2), dilation=1),
          nn.Sigmoid()
        )
save_data_and_model("maxpooling_sigmoid", input, maxpooling_sigmoid)


input = Variable(torch.randn(1, 3, 10, 20))
conv2 = nn.Sequential(
          nn.Conv2d(3, 6, kernel_size=(5,3), stride=1, padding=1),
          nn.Conv2d(6, 4, kernel_size=5, stride=2, padding=(0,2))
          )
save_data_and_model("two_convolution", input, conv2)

input = Variable(torch.randn(1, 3, 10, 20))
deconv2 = nn.Sequential(
    nn.ConvTranspose2d(3, 6, kernel_size=(5,3), stride=1, padding=1),
    nn.ConvTranspose2d(6, 4, kernel_size=5, stride=2, padding=(0,2))
예제 #16
0
    def __init__(self):
        super(D, self).__init__()

        self.main = nn.Sequential(nn.Conv2d(1024, 1, 1), nn.Sigmoid())
예제 #17
0
def main():
    # Setup Logging
    log_dir = "{}/models/{}/".format(args.dump_location, args.exp_name)
    dump_dir = "{}/dump/{}/".format(args.dump_location, args.exp_name)

    if not os.path.exists(log_dir):
        os.makedirs(log_dir)

    if not os.path.exists("{}/images/".format(dump_dir)):
        os.makedirs("{}/images/".format(dump_dir))

    logging.basicConfig(filename=log_dir + 'train.log', level=logging.INFO)
    print("Dumping at {}".format(log_dir))
    print(args)
    logging.info(args)

    # Logging and loss variables
    num_scenes = args.num_processes
    num_episodes = int(args.num_episodes)
    device = args.device = torch.device("cuda:0" if args.cuda else "cpu")
    policy_loss = 0

    best_cost = 100000
    costs = deque(maxlen=1000)
    exp_costs = deque(maxlen=1000)
    pose_costs = deque(maxlen=1000)

    g_masks = torch.ones(num_scenes).float().to(device)
    l_masks = torch.zeros(num_scenes).float().to(device)

    best_local_loss = np.inf
    best_g_reward = -np.inf

    if args.eval:
        traj_lengths = args.max_episode_length // args.num_local_steps
        explored_area_log = np.zeros((num_scenes, num_episodes, traj_lengths))
        explored_ratio_log = np.zeros((num_scenes, num_episodes, traj_lengths))

    g_episode_rewards = deque(maxlen=1000)

    l_action_losses = deque(maxlen=1000)

    g_value_losses = deque(maxlen=1000)
    g_action_losses = deque(maxlen=1000)
    g_dist_entropies = deque(maxlen=1000)

    per_step_g_rewards = deque(maxlen=1000)

    g_process_rewards = np.zeros((num_scenes))

    # Starting environments
    torch.set_num_threads(1)
    envs = make_vec_envs(args)
    obs, infos = envs.reset()

    # Initialize map variables
    ### Full map consists of 4 channels containing the following:
    ### 1. Obstacle Map
    ### 2. Exploread Area
    ### 3. Current Agent Location
    ### 4. Past Agent Locations

    torch.set_grad_enabled(False)

    # Calculating full and local map sizes
    map_size = args.map_size_cm // args.map_resolution
    full_w, full_h = map_size, map_size
    local_w, local_h = int(full_w / args.global_downscaling), \
                       int(full_h / args.global_downscaling)

    # Initializing full and local map
    full_map = torch.zeros(num_scenes, 4, full_w, full_h).float().to(device)
    local_map = torch.zeros(num_scenes, 4, local_w, local_h).float().to(device)

    # Initial full and local pose
    full_pose = torch.zeros(num_scenes, 3).float().to(device)
    local_pose = torch.zeros(num_scenes, 3).float().to(device)

    # Origin of local map
    origins = np.zeros((num_scenes, 3))

    # Local Map Boundaries
    lmb = np.zeros((num_scenes, 4)).astype(int)

    ### Planner pose inputs has 7 dimensions
    ### 1-3 store continuous global agent location
    ### 4-7 store local map boundaries
    planner_pose_inputs = np.zeros((num_scenes, 7))

    def init_map_and_pose():
        full_map.fill_(0.)
        full_pose.fill_(0.)
        full_pose[:, :2] = args.map_size_cm / 100.0 / 2.0

        locs = full_pose.cpu().numpy()
        planner_pose_inputs[:, :3] = locs
        for e in range(num_scenes):
            r, c = locs[e, 1], locs[e, 0]
            loc_r, loc_c = [
                int(r * 100.0 / args.map_resolution),
                int(c * 100.0 / args.map_resolution)
            ]

            full_map[e, 2:, loc_r - 1:loc_r + 2, loc_c - 1:loc_c + 2] = 1.0

            lmb[e] = get_local_map_boundaries(
                (loc_r, loc_c), (local_w, local_h), (full_w, full_h))

            planner_pose_inputs[e, 3:] = lmb[e]
            origins[e] = [
                lmb[e][2] * args.map_resolution / 100.0,
                lmb[e][0] * args.map_resolution / 100.0, 0.
            ]

        for e in range(num_scenes):
            local_map[e] = full_map[e, :, lmb[e, 0]:lmb[e, 1],
                                    lmb[e, 2]:lmb[e, 3]]
            local_pose[e] = full_pose[e] - \
                            torch.from_numpy(origins[e]).to(device).float()

    init_map_and_pose()

    # Global policy observation space
    g_observation_space = gym.spaces.Box(0,
                                         1, (8, local_w, local_h),
                                         dtype='uint8')

    # Global policy action space
    g_action_space = gym.spaces.Box(low=0.0,
                                    high=1.0,
                                    shape=(2, ),
                                    dtype=np.float32)

    # Local policy observation space
    l_observation_space = gym.spaces.Box(
        0, 255, (3, args.frame_width, args.frame_width), dtype='uint8')

    # Local and Global policy recurrent layer sizes
    l_hidden_size = args.local_hidden_size
    g_hidden_size = args.global_hidden_size

    # slam
    nslam_module = Neural_SLAM_Module(args).to(device)
    slam_optimizer = get_optimizer(nslam_module.parameters(),
                                   args.slam_optimizer)

    # Global policy
    g_policy = RL_Policy(g_observation_space.shape,
                         g_action_space,
                         base_kwargs={
                             'recurrent': args.use_recurrent_global,
                             'hidden_size': g_hidden_size,
                             'downscaling': args.global_downscaling
                         }).to(device)
    g_agent = algo.PPO(g_policy,
                       args.clip_param,
                       args.ppo_epoch,
                       args.num_mini_batch,
                       args.value_loss_coef,
                       args.entropy_coef,
                       lr=args.global_lr,
                       eps=args.eps,
                       max_grad_norm=args.max_grad_norm)

    # Local policy
    l_policy = Local_IL_Policy(
        l_observation_space.shape,
        envs.action_space.n,
        recurrent=args.use_recurrent_local,
        hidden_size=l_hidden_size,
        deterministic=args.use_deterministic_local).to(device)
    local_optimizer = get_optimizer(l_policy.parameters(),
                                    args.local_optimizer)

    # Storage
    g_rollouts = GlobalRolloutStorage(args.num_global_steps, num_scenes,
                                      g_observation_space.shape,
                                      g_action_space, g_policy.rec_state_size,
                                      1).to(device)

    slam_memory = FIFOMemory(args.slam_memory_size)

    # Loading model
    if args.load_slam != "0":
        print("Loading slam {}".format(args.load_slam))
        state_dict = torch.load(args.load_slam,
                                map_location=lambda storage, loc: storage)
        nslam_module.load_state_dict(state_dict)

    if not args.train_slam:
        nslam_module.eval()

    if args.load_global != "0":
        print("Loading global {}".format(args.load_global))
        state_dict = torch.load(args.load_global,
                                map_location=lambda storage, loc: storage)
        g_policy.load_state_dict(state_dict)

    if not args.train_global:
        g_policy.eval()

    if args.load_local != "0":
        print("Loading local {}".format(args.load_local))
        state_dict = torch.load(args.load_local,
                                map_location=lambda storage, loc: storage)
        l_policy.load_state_dict(state_dict)

    if not args.train_local:
        l_policy.eval()

    # Predict map from frame 1:
    poses = torch.from_numpy(
        np.asarray([
            infos[env_idx]['sensor_pose'] for env_idx in range(num_scenes)
        ])).float().to(device)

    _, _, local_map[:, 0, :, :], local_map[:, 1, :, :], _, local_pose = \
        nslam_module(obs, obs, poses, local_map[:, 0, :, :],
                     local_map[:, 1, :, :], local_pose)

    # Compute Global policy input
    locs = local_pose.cpu().numpy()
    global_input = torch.zeros(num_scenes, 8, local_w, local_h)
    global_orientation = torch.zeros(num_scenes, 1).long()

    for e in range(num_scenes):
        r, c = locs[e, 1], locs[e, 0]
        loc_r, loc_c = [
            int(r * 100.0 / args.map_resolution),
            int(c * 100.0 / args.map_resolution)
        ]

        local_map[e, 2:, loc_r - 1:loc_r + 2, loc_c - 1:loc_c + 2] = 1.
        global_orientation[e] = int((locs[e, 2] + 180.0) / 5.)

    global_input[:, 0:4, :, :] = local_map.detach()
    global_input[:, 4:, :, :] = nn.MaxPool2d(args.global_downscaling)(full_map)

    g_rollouts.obs[0].copy_(global_input)
    g_rollouts.extras[0].copy_(global_orientation)

    # Run Global Policy (global_goals = Long-Term Goal)
    g_value, g_action, g_action_log_prob, g_rec_states = \
        g_policy.act(
            g_rollouts.obs[0],
            g_rollouts.rec_states[0],
            g_rollouts.masks[0],
            extras=g_rollouts.extras[0],
            deterministic=False
        )

    cpu_actions = nn.Sigmoid()(g_action).cpu().numpy()
    global_goals = [[int(action[0] * local_w),
                     int(action[1] * local_h)] for action in cpu_actions]

    # Compute planner inputs
    planner_inputs = [{} for e in range(num_scenes)]
    for e, p_input in enumerate(planner_inputs):
        p_input['goal'] = global_goals[e]
        p_input['map_pred'] = global_input[e, 0, :, :].detach().cpu().numpy()
        p_input['exp_pred'] = global_input[e, 1, :, :].detach().cpu().numpy()
        p_input['pose_pred'] = planner_pose_inputs[e]

    # Output stores local goals as well as the the ground-truth action
    output = envs.get_short_term_goal(planner_inputs)

    last_obs = obs.detach()
    local_rec_states = torch.zeros(num_scenes, l_hidden_size).to(device)
    start = time.time()

    total_num_steps = -1
    g_reward = 0

    torch.set_grad_enabled(False)

    for ep_num in range(num_episodes):
        for step in range(args.max_episode_length):
            total_num_steps += 1

            g_step = (step // args.num_local_steps) % args.num_global_steps
            eval_g_step = step // args.num_local_steps + 1
            l_step = step % args.num_local_steps

            # ------------------------------------------------------------------
            # Local Policy
            del last_obs
            last_obs = obs.detach()
            local_masks = l_masks
            local_goals = output[:, :-1].to(device).long()

            if args.train_local:
                torch.set_grad_enabled(True)

            action, action_prob, local_rec_states = l_policy(
                obs,
                local_rec_states,
                local_masks,
                extras=local_goals,
            )

            if args.train_local:
                action_target = output[:, -1].long().to(device)
                policy_loss += nn.CrossEntropyLoss()(action_prob,
                                                     action_target)
                torch.set_grad_enabled(False)
            l_action = action.cpu()
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Env step
            obs, rew, done, infos = envs.step(l_action)

            l_masks = torch.FloatTensor([0 if x else 1
                                         for x in done]).to(device)
            g_masks *= l_masks
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Reinitialize variables when episode ends
            if step == args.max_episode_length - 1:  # Last episode step
                init_map_and_pose()
                del last_obs
                last_obs = obs.detach()
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Neural SLAM Module
            if args.train_slam:
                # Add frames to memory
                for env_idx in range(num_scenes):
                    env_obs = obs[env_idx].to("cpu")
                    env_poses = torch.from_numpy(
                        np.asarray(
                            infos[env_idx]['sensor_pose'])).float().to("cpu")
                    env_gt_fp_projs = torch.from_numpy(
                        np.asarray(infos[env_idx]['fp_proj'])).unsqueeze(
                            0).float().to("cpu")
                    env_gt_fp_explored = torch.from_numpy(
                        np.asarray(infos[env_idx]['fp_explored'])).unsqueeze(
                            0).float().to("cpu")
                    env_gt_pose_err = torch.from_numpy(
                        np.asarray(
                            infos[env_idx]['pose_err'])).float().to("cpu")
                    slam_memory.push(
                        (last_obs[env_idx].cpu(), env_obs, env_poses),
                        (env_gt_fp_projs, env_gt_fp_explored, env_gt_pose_err))

            poses = torch.from_numpy(
                np.asarray([
                    infos[env_idx]['sensor_pose']
                    for env_idx in range(num_scenes)
                ])).float().to(device)

            _, _, local_map[:, 0, :, :], local_map[:, 1, :, :], _, local_pose = \
                nslam_module(last_obs, obs, poses, local_map[:, 0, :, :],
                             local_map[:, 1, :, :], local_pose, build_maps=True)

            locs = local_pose.cpu().numpy()
            planner_pose_inputs[:, :3] = locs + origins
            local_map[:,
                      2, :, :].fill_(0.)  # Resetting current location channel
            for e in range(num_scenes):
                r, c = locs[e, 1], locs[e, 0]
                loc_r, loc_c = [
                    int(r * 100.0 / args.map_resolution),
                    int(c * 100.0 / args.map_resolution)
                ]

                local_map[e, 2:, loc_r - 2:loc_r + 3, loc_c - 2:loc_c + 3] = 1.
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Global Policy
            if l_step == args.num_local_steps - 1:
                # For every global step, update the full and local maps
                for e in range(num_scenes):
                    full_map[e, :, lmb[e, 0]:lmb[e, 1], lmb[e, 2]:lmb[e, 3]] = \
                        local_map[e]
                    full_pose[e] = local_pose[e] + \
                                   torch.from_numpy(origins[e]).to(device).float()

                    locs = full_pose[e].cpu().numpy()
                    r, c = locs[1], locs[0]
                    loc_r, loc_c = [
                        int(r * 100.0 / args.map_resolution),
                        int(c * 100.0 / args.map_resolution)
                    ]

                    lmb[e] = get_local_map_boundaries(
                        (loc_r, loc_c), (local_w, local_h), (full_w, full_h))

                    planner_pose_inputs[e, 3:] = lmb[e]
                    origins[e] = [
                        lmb[e][2] * args.map_resolution / 100.0,
                        lmb[e][0] * args.map_resolution / 100.0, 0.
                    ]

                    local_map[e] = full_map[e, :, lmb[e, 0]:lmb[e, 1],
                                            lmb[e, 2]:lmb[e, 3]]
                    local_pose[e] = full_pose[e] - \
                                    torch.from_numpy(origins[e]).to(device).float()

                locs = local_pose.cpu().numpy()
                for e in range(num_scenes):
                    global_orientation[e] = int((locs[e, 2] + 180.0) / 5.)
                global_input[:, 0:4, :, :] = local_map
                global_input[:, 4:, :, :] = \
                    nn.MaxPool2d(args.global_downscaling)(full_map)

                if False:
                    for i in range(4):
                        ax[i].clear()
                        ax[i].set_yticks([])
                        ax[i].set_xticks([])
                        ax[i].set_yticklabels([])
                        ax[i].set_xticklabels([])
                        ax[i].imshow(global_input.cpu().numpy()[0, 4 + i])
                    plt.gcf().canvas.flush_events()
                    # plt.pause(0.1)
                    fig.canvas.start_event_loop(0.001)
                    plt.gcf().canvas.flush_events()

                # Get exploration reward and metrics
                g_reward = torch.from_numpy(
                    np.asarray([
                        infos[env_idx]['exp_reward']
                        for env_idx in range(num_scenes)
                    ])).float().to(device)

                if args.eval:
                    g_reward = g_reward * 50.0  # Convert reward to area in m2

                g_process_rewards += g_reward.cpu().numpy()
                g_total_rewards = g_process_rewards * \
                                  (1 - g_masks.cpu().numpy())
                g_process_rewards *= g_masks.cpu().numpy()
                per_step_g_rewards.append(np.mean(g_reward.cpu().numpy()))

                if np.sum(g_total_rewards) != 0:
                    for tr in g_total_rewards:
                        g_episode_rewards.append(tr) if tr != 0 else None

                if args.eval:
                    exp_ratio = torch.from_numpy(
                        np.asarray([
                            infos[env_idx]['exp_ratio']
                            for env_idx in range(num_scenes)
                        ])).float()

                    for e in range(num_scenes):
                        explored_area_log[e, ep_num, eval_g_step - 1] = \
                            explored_area_log[e, ep_num, eval_g_step - 2] + \
                            g_reward[e].cpu().numpy()
                        explored_ratio_log[e, ep_num, eval_g_step - 1] = \
                            explored_ratio_log[e, ep_num, eval_g_step - 2] + \
                            exp_ratio[e].cpu().numpy()

                # Add samples to global policy storage
                g_rollouts.insert(global_input, g_rec_states, g_action,
                                  g_action_log_prob, g_value, g_reward,
                                  g_masks, global_orientation)

                # Sample long-term goal from global policy
                g_value, g_action, g_action_log_prob, g_rec_states = \
                    g_policy.act(
                        g_rollouts.obs[g_step + 1],
                        g_rollouts.rec_states[g_step + 1],
                        g_rollouts.masks[g_step + 1],
                        extras=g_rollouts.extras[g_step + 1],
                        deterministic=False
                    )
                cpu_actions = nn.Sigmoid()(g_action).cpu().numpy()
                global_goals = [[
                    int(action[0] * local_w),
                    int(action[1] * local_h)
                ] for action in cpu_actions]

                g_reward = 0
                g_masks = torch.ones(num_scenes).float().to(device)
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Get short term goal
            planner_inputs = [{} for e in range(num_scenes)]
            for e, p_input in enumerate(planner_inputs):
                p_input['map_pred'] = local_map[e, 0, :, :].cpu().numpy()
                p_input['exp_pred'] = local_map[e, 1, :, :].cpu().numpy()
                p_input['pose_pred'] = planner_pose_inputs[e]
                p_input['goal'] = global_goals[e]

            output = envs.get_short_term_goal(planner_inputs)
            # ------------------------------------------------------------------

            ### TRAINING
            torch.set_grad_enabled(True)
            # ------------------------------------------------------------------
            # Train Neural SLAM Module
            if args.train_slam and len(slam_memory) > args.slam_batch_size:
                for _ in range(args.slam_iterations):
                    inputs, outputs = slam_memory.sample(args.slam_batch_size)
                    b_obs_last, b_obs, b_poses = inputs
                    gt_fp_projs, gt_fp_explored, gt_pose_err = outputs

                    b_obs = b_obs.to(device)
                    b_obs_last = b_obs_last.to(device)
                    b_poses = b_poses.to(device)

                    gt_fp_projs = gt_fp_projs.to(device)
                    gt_fp_explored = gt_fp_explored.to(device)
                    gt_pose_err = gt_pose_err.to(device)

                    b_proj_pred, b_fp_exp_pred, _, _, b_pose_err_pred, _ = \
                        nslam_module(b_obs_last, b_obs, b_poses,
                                     None, None, None,
                                     build_maps=False)
                    loss = 0
                    if args.proj_loss_coeff > 0:
                        proj_loss = F.binary_cross_entropy(
                            b_proj_pred, gt_fp_projs)
                        costs.append(proj_loss.item())
                        loss += args.proj_loss_coeff * proj_loss

                    if args.exp_loss_coeff > 0:
                        exp_loss = F.binary_cross_entropy(
                            b_fp_exp_pred, gt_fp_explored)
                        exp_costs.append(exp_loss.item())
                        loss += args.exp_loss_coeff * exp_loss

                    if args.pose_loss_coeff > 0:
                        pose_loss = torch.nn.MSELoss()(b_pose_err_pred,
                                                       gt_pose_err)
                        pose_costs.append(args.pose_loss_coeff *
                                          pose_loss.item())
                        loss += args.pose_loss_coeff * pose_loss

                    if args.train_slam:
                        slam_optimizer.zero_grad()
                        loss.backward()
                        slam_optimizer.step()

                    del b_obs_last, b_obs, b_poses
                    del gt_fp_projs, gt_fp_explored, gt_pose_err
                    del b_proj_pred, b_fp_exp_pred, b_pose_err_pred

            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Train Local Policy
            if (l_step + 1) % args.local_policy_update_freq == 0 \
                    and args.train_local:
                local_optimizer.zero_grad()
                policy_loss.backward()
                local_optimizer.step()
                l_action_losses.append(policy_loss.item())
                policy_loss = 0
                local_rec_states = local_rec_states.detach_()
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Train Global Policy
            if g_step % args.num_global_steps == args.num_global_steps - 1 \
                    and l_step == args.num_local_steps - 1:
                if args.train_global:
                    g_next_value = g_policy.get_value(
                        g_rollouts.obs[-1],
                        g_rollouts.rec_states[-1],
                        g_rollouts.masks[-1],
                        extras=g_rollouts.extras[-1]).detach()

                    g_rollouts.compute_returns(g_next_value, args.use_gae,
                                               args.gamma, args.tau)
                    g_value_loss, g_action_loss, g_dist_entropy = \
                        g_agent.update(g_rollouts)
                    g_value_losses.append(g_value_loss)
                    g_action_losses.append(g_action_loss)
                    g_dist_entropies.append(g_dist_entropy)
                g_rollouts.after_update()
            # ------------------------------------------------------------------

            # Finish Training
            torch.set_grad_enabled(False)
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Logging
            if total_num_steps % args.log_interval == 0:
                end = time.time()
                time_elapsed = time.gmtime(end - start)
                log = " ".join([
                    "Time: {0:0=2d}d".format(time_elapsed.tm_mday - 1),
                    "{},".format(time.strftime("%Hh %Mm %Ss", time_elapsed)),
                    "num timesteps {},".format(total_num_steps *
                                               num_scenes),
                    "FPS {},".format(int(total_num_steps * num_scenes \
                                         / (end - start)))
                ])

                log += "\n\tRewards:"

                if len(g_episode_rewards) > 0:
                    log += " ".join([
                        " Global step mean/med rew:",
                        "{:.4f}/{:.4f},".format(np.mean(per_step_g_rewards),
                                                np.median(per_step_g_rewards)),
                        " Global eps mean/med/min/max eps rew:",
                        "{:.3f}/{:.3f}/{:.3f}/{:.3f},".format(
                            np.mean(g_episode_rewards),
                            np.median(g_episode_rewards),
                            np.min(g_episode_rewards),
                            np.max(g_episode_rewards))
                    ])

                log += "\n\tLosses:"

                if args.train_local and len(l_action_losses) > 0:
                    log += " ".join([
                        " Local Loss:",
                        "{:.3f},".format(np.mean(l_action_losses))
                    ])

                if args.train_global and len(g_value_losses) > 0:
                    log += " ".join([
                        " Global Loss value/action/dist:",
                        "{:.3f}/{:.3f}/{:.3f},".format(
                            np.mean(g_value_losses), np.mean(g_action_losses),
                            np.mean(g_dist_entropies))
                    ])

                if args.train_slam and len(costs) > 0:
                    log += " ".join([
                        " SLAM Loss proj/exp/pose:"
                        "{:.4f}/{:.4f}/{:.4f}".format(np.mean(costs),
                                                      np.mean(exp_costs),
                                                      np.mean(pose_costs))
                    ])

                print(log)
                logging.info(log)
            # ------------------------------------------------------------------

            # ------------------------------------------------------------------
            # Save best models
            if (total_num_steps * num_scenes) % args.save_interval < \
                    num_scenes:

                # Save Neural SLAM Model
                if len(costs) >= 1000 and np.mean(costs) < best_cost \
                        and not args.eval:
                    best_cost = np.mean(costs)
                    torch.save(nslam_module.state_dict(),
                               os.path.join(log_dir, "model_best.slam"))

                # Save Local Policy Model
                if len(l_action_losses) >= 100 and \
                        (np.mean(l_action_losses) <= best_local_loss) \
                        and not args.eval:
                    torch.save(l_policy.state_dict(),
                               os.path.join(log_dir, "model_best.local"))

                    best_local_loss = np.mean(l_action_losses)

                # Save Global Policy Model
                if len(g_episode_rewards) >= 100 and \
                        (np.mean(g_episode_rewards) >= best_g_reward) \
                        and not args.eval:
                    torch.save(g_policy.state_dict(),
                               os.path.join(log_dir, "model_best.global"))
                    best_g_reward = np.mean(g_episode_rewards)

            # Save periodic models
            if (total_num_steps * num_scenes) % args.save_periodic < \
                    num_scenes:
                step = total_num_steps * num_scenes
                if args.train_slam:
                    torch.save(
                        nslam_module.state_dict(),
                        os.path.join(dump_dir,
                                     "periodic_{}.slam".format(step)))
                if args.train_local:
                    torch.save(
                        l_policy.state_dict(),
                        os.path.join(dump_dir,
                                     "periodic_{}.local".format(step)))
                if args.train_global:
                    torch.save(
                        g_policy.state_dict(),
                        os.path.join(dump_dir,
                                     "periodic_{}.global".format(step)))
            # ------------------------------------------------------------------

    # Print and save model performance numbers during evaluation
    if args.eval:
        logfile = open("{}/explored_area.txt".format(dump_dir), "w+")
        for e in range(num_scenes):
            for i in range(explored_area_log[e].shape[0]):
                logfile.write(str(explored_area_log[e, i]) + "\n")
                logfile.flush()

        logfile.close()

        logfile = open("{}/explored_ratio.txt".format(dump_dir), "w+")
        for e in range(num_scenes):
            for i in range(explored_ratio_log[e].shape[0]):
                logfile.write(str(explored_ratio_log[e, i]) + "\n")
                logfile.flush()

        logfile.close()

        log = "Final Exp Area: \n"
        for i in range(explored_area_log.shape[2]):
            log += "{:.5f}, ".format(np.mean(explored_area_log[:, :, i]))

        log += "\nFinal Exp Ratio: \n"
        for i in range(explored_ratio_log.shape[2]):
            log += "{:.5f}, ".format(np.mean(explored_ratio_log[:, :, i]))

        print(log)
        logging.info(log)
예제 #18
0
def build_activation(act_func, inplace=True, upscale_factor=2):
    if act_func == 'relu':
        return nn.ReLU(inplace=inplace)
    elif act_func == 'relu6':
        return nn.ReLU6(inplace=inplace)
    elif act_func == 'tanh':
        return nn.Tanh()
    elif act_func == 'sigmoid':
        return nn.Sigmoid()
    elif act_func == 'h_swish':
        return Hswish(inplace=inplace)
    elif act_func == 'h_sigmoid':
        return Hsigmoid(inplace=inplace)
    elif act_func == 'prelu':
        return nn.PReLU(inplace=inplace)
    elif act_func == 'lrelu':
        return nn.LeakyReLU(0.1, inplace=inplace)
    elif act_func == 'pixelshuffle':
        return build_pixelshuffle(upscale_factor=2)
    elif act_func == 'pixelshuffle+relu':
        return nn.Sequential(
            build_pixelshuffle(upscale_factor=upscale_factor),
            nn.ReLU(inplace=inplace)
        )
    elif act_func == 'pixelshuffle+relu6':
        return nn.Sequential(
            build_pixelshuffle(upscale_factor=upscale_factor),
            nn.ReLU6(inplace=inplace)
        )
    elif act_func == 'pixelshuffle+prelu':
        return nn.Sequential(
            build_pixelshuffle(upscale_factor=upscale_factor),
            nn.PReLU(inplace=inplace)
        )
    elif act_func == 'pixelshuffle+lrelu':
        return nn.Sequential(
            build_pixelshuffle(upscale_factor=upscale_factor),
            nn.LeakyReLU(0.1, inplace=inplace)
        )
    elif act_func == 'pixelunshuffle':
        return build_pixelunshuffle(downscale_factor=2)
    elif act_func == 'pixelunshuffle+relu':
        return nn.Sequential(
            build_pixelunshuffle(downscale_factor=upscale_factor),
            nn.ReLU(inplace=inplace)
        )
    elif act_func == 'pixelunshuffle+relu6':
        return nn.Sequential(
            build_pixelunshuffle(downscale_factor=upscale_factor),
            nn.ReLU6(inplace=inplace)
        )
    elif act_func == 'pixelunshuffle+prelu':
        return nn.Sequential(
            build_pixelunshuffle(downscale_factor=upscale_factor),
            nn.PReLU(inplace=inplace)
        )
    elif act_func == 'pixelunshuffle+lrelu':
        return nn.Sequential(
            build_pixelunshuffle(downscale_factor=upscale_factor),
            nn.LeakyReLU(0.1, inplace=inplace)
        )
    elif act_func is None:
        return None
    else:
        raise ValueError('do not support: %s' % act_func)
        nn.Linear(10, 1),
        nn.ReLU()).to(DEVICE)


elif args.cp:
    env = environment.CPEnvironment(DEVICE)

    policy = DiscretePolicy(nn.Sequential(
        nn.Linear(4, 5),
        nn.ReLU(),
        nn.Linear(5, 2),
        nn.Softmax(dim=-1))).to(DEVICE)

    value = nn.Sequential(
        nn.Linear(4, 5),
        nn.Sigmoid(),
        nn.Linear(5, 1),
        nn.ReLU()
    ).to(DEVICE)


elif args.ip:
    env = environment.IPEnvironment(DEVICE)

    mean = nn.Sequential(nn.Linear(3, 5), nn.ReLU(), nn.Linear(5, 1))
    std = nn.Sequential(nn.Linear(3, 5), nn.ReLU(), nn.Linear(5, 1))

    policy = ContinuousPolicy(mean, std).to(DEVICE)

    value = nn.Sequential(
        nn.Linear(3, 5),
예제 #20
0
파일: models.py 프로젝트: howardh/oid
 def __init__(self, output_size):
     super(YoloClassifier, self).__init__()
     self.linear = nn.Linear(in_features=4 * 4 * 1024,
                             out_features=output_size)
     self.softmax = nn.Softmax()
     self.sigmoid = nn.Sigmoid()
예제 #21
0
 def __init__(self):
     super(FinalLayer, self).__init__()
     self.fc = nn.Linear(2048, 12)
     self.sigmoid = nn.Sigmoid()
예제 #22
0
    def __init__(self, nfeat, nhid, nout, dropout):
        super(GCNLink, self).__init__()

        self.GCN = GCN(nfeat, nhid, nout, dropout)
        self.distmult = nn.Parameter(torch.rand(nout))
        self.sigmoid = nn.Sigmoid()
예제 #23
0
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F

softmax = nn.Softmax()
sigmoid = nn.Sigmoid()

def batch_matmul_bias(seq, weight, bias, nonlinearity=''):
    s = None
    bias_dim = bias.size()
    for i in range(seq.size(0)):
        _s = torch.mm(seq[i], weight) 
        _s_bias = _s + bias.expand(bias_dim[0], _s.size()[0]).transpose(0,1)
        if(nonlinearity=='tanh'):
            _s_bias = torch.tanh(_s_bias)
        _s_bias = _s_bias.unsqueeze(0)
        if(s is None):
            s = _s_bias
        else:
            s = torch.cat((s,_s_bias),0)
    return s.squeeze()

def batch_matmul(seq, weight, nonlinearity=''):
    s = None
    for i in range(seq.size(0)):
        _s = torch.mm(seq[i], weight)
예제 #24
0
    def __init__(self, feedback_bits):
        super(Decoder, self).__init__()
        self.feedback_bits = feedback_bits
        self.dequantize = DequantizationLayer(self.B)

        self.conv2nums = 2
        self.conv3nums = 3
        self.conv4nums = 5
        self.conv5nums = 3

        self.multiConvs2 = nn.ModuleList()
        self.multiConvs3 = nn.ModuleList()
        self.multiConvs4 = nn.ModuleList()
        self.multiConvs5 = nn.ModuleList()

        self.fc = nn.Linear(int(feedback_bits / self.B), 1024)
        self.out_cov = conv3x3(2, 2)
        self.sig = nn.Sigmoid()

        self.multiConvs2.append(nn.Sequential(
                conv3x3(2, 64),
                nn.BatchNorm2d(64),
                nn.ReLU(),
                conv3x3(64, 256),
                nn.BatchNorm2d(256),
                nn.ReLU()))
        self.multiConvs3.append(nn.Sequential(
                conv3x3(256, 512),
                nn.BatchNorm2d(512),
                nn.ReLU(),
                conv3x3(512, 512),
                nn.BatchNorm2d(512),
                nn.ReLU()))
        self.multiConvs4.append(nn.Sequential(
                conv3x3(512, 1024),
                nn.BatchNorm2d(1024),
                nn.ReLU(),
                conv3x3(1024, 1024),
                nn.BatchNorm2d(1024),
                nn.ReLU()))
        self.multiConvs5.append(nn.Sequential(
                conv3x3(1024, 128),
                nn.BatchNorm2d(128),
                nn.ReLU(),
                conv3x3(128, 32),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                conv3x3(32, 2),
                nn.BatchNorm2d(2),
                nn.ReLU()))
                
        for _ in range(self.conv2nums):
            self.multiConvs2.append(nn.Sequential(
                conv3x3(256, 64),
                nn.BatchNorm2d(64),
                nn.ReLU(),
                conv3x3(64, 64),
                nn.BatchNorm2d(64),
                nn.ReLU(),
                conv3x3(64, 256),
                nn.BatchNorm2d(256),
                nn.ReLU()))
        for _ in range(self.conv3nums):
            self.multiConvs3.append(nn.Sequential(
                conv3x3(512, 128),
                nn.BatchNorm2d(128),
                nn.ReLU(),
                conv3x3(128, 128),
                nn.BatchNorm2d(128),
                nn.ReLU(),
                conv3x3(128, 512),
                nn.BatchNorm2d(512),
                nn.ReLU()))
        for _ in range(self.conv4nums):
            self.multiConvs4.append(nn.Sequential(
                conv3x3(1024, 256),
                nn.BatchNorm2d(256),
                nn.ReLU(),
                conv3x3(256, 256),
                nn.BatchNorm2d(256),
                nn.ReLU(),
                conv3x3(256, 1024),
                nn.BatchNorm2d(1024),
                nn.ReLU()))
        for _ in range(self.conv5nums):
            self.multiConvs5.append(nn.Sequential(
                conv3x3(2, 32),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                conv3x3(32, 32),
                nn.BatchNorm2d(32),
                nn.ReLU(),
                conv3x3(32, 2),
                nn.BatchNorm2d(2),
                nn.ReLU()))
예제 #25
0
complete_dataset = TurnPredictionDataset(feature_dict_list, annotations_dir, complete_path, sequence_length,
                                      prediction_length, 'test', data_select=data_set_select)

complete_dataloader = DataLoader(complete_dataset, batch_size=1, shuffle=False, num_workers=0,  # previously shuffle = shuffle
                              drop_last=False, pin_memory=p_memory)

feature_size_dict = complete_dataset.get_feature_size_dict()

print('time taken to load data: ' + str(t.time() - t1))

complete_file_list = list(pd.read_csv(complete_path, header=None, dtype=str)[0])

lstm = torch.load('lstm_models/ling_50ms.p')
ffnn = torch.load('smol_from_big.p')

s = nn.Sigmoid()

def find_trps():
    losses_test = list()
    results_dict = dict()
    losses_dict = dict()
    batch_sizes = list()
    trp_dict = dict()
    distance_dict = dict()
    losses_mse, losses_l1 = [], []
    lstm.eval()
    # setup results_dict
    results_lengths = complete_dataset.get_results_lengths()
    for file_name in complete_file_list:
        #        for g_f in ['g','f']:
        for g_f in ['g','f']:
    def __init__(self, z_dim, device=None):
        super(DSVAELHR, self).__init__()
        self.z_dim = z_dim
        if device is None:
            self.cuda = False
            self.device = None
        else:
            self.device = device
            self.cuda = True

        #ENCODER RESIDUAL
        self.e1 = nn.Conv2d(3,
                            64,
                            4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 64, 32, 32]
        weights_init(self.e1)
        self.instance_norm_e1 = nn.InstanceNorm2d(num_features=64,
                                                  affine=False)

        self.e2 = nn.Conv2d(64,
                            128,
                            4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 128, 16, 16]
        weights_init(self.e2)
        self.instance_norm_e2 = nn.InstanceNorm2d(num_features=128,
                                                  affine=False)

        self.e3 = nn.Conv2d(128,
                            256,
                            4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 256, 8, 8]
        weights_init(self.e3)
        self.instance_norm_e3 = nn.InstanceNorm2d(num_features=256,
                                                  affine=False)

        self.e4 = nn.Conv2d(256,
                            512,
                            4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 512, 4, 4]
        weights_init(self.e4)
        self.instance_norm_e4 = nn.InstanceNorm2d(num_features=512,
                                                  affine=False)

        self.fc1 = nn.Linear(512 * 4 * 4, 256)
        weights_init(self.fc1)

        self.fc_mean = nn.Linear(256, z_dim)
        weights_init(self.fc_mean)
        self.fc_var = nn.Linear(256, z_dim)
        weights_init(self.fc_var)

        #DECODER
        self.d1 = nn.Conv2d(3,
                            64,
                            kernel_size=4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 64, 32, 32]
        weights_init(self.d1)

        self.d2 = nn.Conv2d(64,
                            128,
                            kernel_size=4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 128, 16, 16]
        weights_init(self.d2)
        self.mu2 = nn.Linear(self.z_dim, 128 * 16 * 16)
        self.sig2 = nn.Linear(self.z_dim, 128 * 16 * 16)
        self.instance_norm_d2 = nn.InstanceNorm2d(num_features=128,
                                                  affine=False)

        self.d3 = nn.Conv2d(128,
                            256,
                            kernel_size=4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 64, 8, 8]
        weights_init(self.d3)
        self.mu3 = nn.Linear(self.z_dim, 256 * 8 * 8)
        self.sig3 = nn.Linear(self.z_dim, 256 * 8 * 8)
        self.instance_norm_d3 = nn.InstanceNorm2d(num_features=256,
                                                  affine=False)

        self.d4 = nn.Conv2d(256,
                            512,
                            kernel_size=4,
                            stride=2,
                            padding=1,
                            bias=True,
                            padding_mode='zeros')  #[b, 64, 4, 4]
        weights_init(self.d4)
        self.mu4 = nn.Linear(self.z_dim, 512 * 4 * 4)
        self.sig4 = nn.Linear(self.z_dim, 512 * 4 * 4)
        self.instance_norm_d4 = nn.InstanceNorm2d(num_features=512,
                                                  affine=False)

        self.fc2 = nn.Linear(512 * 4 * 4, 512 * 4 * 4)
        weights_init(self.fc2)

        self.d5 = nn.ConvTranspose2d(512,
                                     256,
                                     kernel_size=4,
                                     stride=2,
                                     padding=1)  #[b, 256, 8, 8]
        weights_init(self.d5)
        self.mu5 = nn.Linear(self.z_dim, 256 * 8 * 8)
        self.sig5 = nn.Linear(self.z_dim, 256 * 8 * 8)
        self.instance_norm_d5 = nn.InstanceNorm2d(num_features=256,
                                                  affine=False)

        self.d6 = nn.ConvTranspose2d(256,
                                     128,
                                     kernel_size=4,
                                     stride=2,
                                     padding=1)  #[b, 128, 16, 16]
        weights_init(self.d6)
        self.mu6 = nn.Linear(self.z_dim, 128 * 16 * 16)
        self.sig6 = nn.Linear(self.z_dim, 128 * 16 * 16)
        self.instance_norm_d6 = nn.InstanceNorm2d(num_features=128,
                                                  affine=False)

        self.d7 = nn.ConvTranspose2d(128,
                                     64,
                                     kernel_size=4,
                                     stride=2,
                                     padding=1)  #[b, 64, 32, 32]
        weights_init(self.d7)
        self.mu7 = nn.Linear(self.z_dim, 64 * 32 * 32)
        self.sig7 = nn.Linear(self.z_dim, 64 * 32 * 32)
        self.instance_norm_d7 = nn.InstanceNorm2d(num_features=64,
                                                  affine=False)

        self.d8 = nn.ConvTranspose2d(64,
                                     32,
                                     kernel_size=4,
                                     stride=2,
                                     padding=1)  #[b, 32, 64, 64]
        weights_init(self.d8)
        self.mu8 = nn.Linear(self.z_dim, 32 * 64 * 64)
        self.sig8 = nn.Linear(self.z_dim, 32 * 64 * 64)
        self.instance_norm_d8 = nn.InstanceNorm2d(num_features=32,
                                                  affine=False)

        self.d9 = nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2,
                                     padding=1)  #[b, 3, 128, 128]
        weights_init(self.d9)

        self.leakyrelu = nn.LeakyReLU(0.2)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
예제 #27
0
def train(train_loader,
          model,
          criterion,
          optimizer,
          epoch,
          scheduler,
          source_resl,
          target_resl):
                                            
    global train_minib_counter
    global logger
        
    # scheduler.batch_step()
    
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    f1_scores = AverageMeter()


    # switch to train mode
    model.train()

    # sigmoid for f1 calculation and illustrations
    m = nn.Sigmoid()    

    end = time.time()
    
    for i, (input, target, or_resl, target_resl,img_sample) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # permute to pytorch format
        input = input.permute(0,3,1,2).contiguous().float().cuda(async=True)
        # take only mask and boundary at first
        target = target[:,:,:,0:args.channels].permute(0,3,1,2).contiguous().float().cuda(async=True)

        input_var = torch.autograd.Variable(input)
        target_var = torch.autograd.Variable(target)

        # compute output
        output = model(input_var)
                                            
        loss = criterion(output, target_var)
        
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()        
        
 
        # calcuale f1 scores only on cell masks
        # weird pytorch numerical issue when converting to float
        
        target_f1 = (target_var.data[:,0:1,:,:]>args.ths)*1
        f1_scores_batch = batch_f1_score(output = m(output.data[:,0:1,:,:]),
                                   target = target_f1,
                                   threshold=args.ths)

        # measure accuracy and record loss
        losses.update(loss.data[0], input.size(0))
        f1_scores.update(f1_scores_batch, input.size(0))

        # log the current lr
        current_lr = optimizer.state_dict()['param_groups'][0]['lr']
                                                          
                                            
        #============ TensorBoard logging ============#
        # Log the scalar values        
        if args.tensorboard:
            info = {
                'train_loss': losses.val,
                'f1_score_train': f1_scores.val,
                'train_lr': current_lr,                
            }
            for tag, value in info.items():
                logger.scalar_summary(tag, value, train_minib_counter)                

        train_minib_counter += 1

        if i % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'F1    {f1_scores.val:.4f} ({f1_scores.avg:.4f})\t'.format(
                   epoch,i, len(train_loader),
                   batch_time=batch_time,data_time=data_time,
                   loss=losses,f1_scores=f1_scores))

    print(' * Avg Train Loss  {loss.avg:.4f}'.format(loss=losses))
    print(' * Avg F1    Score {f1_scores.avg:.4f}'.format(f1_scores=f1_scores))
            
    return losses.avg, f1_scores.avg
예제 #28
0
 def __init__(self):
     super(Classifier, self).__init__()
     self.FC = torch.nn.Sequential(nn.Linear(Z_in, 1),
                                   nn.Dropout(rate), nn.Sigmoid())
예제 #29
0
def predict(predict_loader,
            model,model1,model2,model3):
    
    global logger
    global pred_minib_counter
    
    m = nn.Sigmoid()
    model.eval()
    model1.eval()
    model2.eval()
    model3.eval()

    temp_df = pd.DataFrame(columns = ['ImageId','EncodedPixels'])
    
    with tqdm.tqdm(total=len(predict_loader)) as pbar:
        for i, (input, target, or_resl, target_resl, img_ids) in enumerate(predict_loader):
            
            # reshape to PyTorch format
            input = input.permute(0,3,1,2).contiguous().float().cuda(async=True)
            input_var = torch.autograd.Variable(input, volatile=True)
            
            # compute output
            output = model(input_var)
            output1 = model1(input_var)
            output2 = model2(input_var)
            output3 = model3(input_var)
            
            for k,(pred_mask,pred_mask1,pred_mask2,pred_mask3) in enumerate(zip(output,output1,output2,output3)):

                or_w = or_resl[0][k]
                or_h = or_resl[1][k]
                
                print(or_w,or_h)
                
                mask_predictions = []
                energy_predictions = []
                
                # for pred_msk in [pred_mask,pred_mask1,pred_mask2,pred_mask3]:
                for pred_msk in [pred_mask]:
                    _,__ = calculate_energy(pred_msk,or_h,or_w)
                    mask_predictions.append(_)
                    energy_predictions.append(__)
                   
                avg_mask = np.asarray(mask_predictions).mean(axis=0)
                avg_energy = np.asarray(energy_predictions).mean(axis=0)
                imsave('../examples/mask_{}.png'.format(img_ids[k]),avg_mask.astype('uint8'))
                imsave('../examples/energy_{}.png'.format(img_ids[k]),avg_energy.astype('uint8'))
                
                labels = wt_seeds(avg_mask,
                                  avg_energy,
                                  args.ths)  
                
                labels_seed = cv2.applyColorMap((labels / labels.max() * 255).astype('uint8'), cv2.COLORMAP_JET)                  
                imsave('../examples/labels_{}.png'.format(img_ids[k]),labels_seed)

                if args.tensorboard_images:
                    info = {
                        'images': to_np(input),
                        'labels_wt': np.expand_dims(labels_seed,axis=0),
                        'pred_mask_fold0': np.expand_dims(mask_predictions[0],axis=0),
                        'pred_mask_fold1': np.expand_dims(mask_predictions[1],axis=0),
                        'pred_mask_fold2': np.expand_dims(mask_predictions[2],axis=0),
                        'pred_mask_fold3': np.expand_dims(mask_predictions[3],axis=0),
                        'pred_energy_fold0': np.expand_dims(energy_predictions[0],axis=0),
                        'pred_energy_fold1': np.expand_dims(energy_predictions[1],axis=0),
                        'pred_energy_fold2': np.expand_dims(energy_predictions[2],axis=0),
                        'pred_energy_fold3': np.expand_dims(energy_predictions[3],axis=0),
                    }
                    for tag, images in info.items():
                        logger.image_summary(tag, images, pred_minib_counter)

                pred_minib_counter += 1
                
                wt_areas = []
                for j,label in enumerate(np.unique(labels)):
                    if j == 0:
                        # pass the background
                        pass
                    else:
                        wt_areas.append((labels == label) * 1)
               
                for wt_area in wt_areas:
                    append_df = pd.DataFrame(columns = ['ImageId','EncodedPixels'])
                    append_df['ImageId'] = [img_ids[k]]
                    append_df['EncodedPixels'] = [' '.join(map(str, rle_encoding(wt_area))) ]
                    
                    temp_df = temp_df.append(append_df)
            
            pbar.update(1)            

    return temp_df
예제 #30
0
 def forward(self, x, y):
     x = torch.cat((self.linear_x(x), self.linear_y(y)), dim=1)
     x = F.dropout(self.linear_1(x), p=0.5)
     return nn.Sigmoid()(self.linear_2(x))