def roi_align(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _cast_Long( g, squeeze( g, select( g, rois, 1, g.op('Constant', value_t=torch.tensor([0], dtype=torch.long))), 1), False) rois = select( g, rois, 1, g.op('Constant', value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) if aligned: warnings.warn( "ONNX export of ROIAlign with aligned=True does not match PyTorch when using malformed boxes," " ONNX forces ROIs to be 1x1 or larger.") scale = torch.tensor(0.5 / spatial_scale).to(dtype=torch.float) rois = g.op("Sub", rois, scale) # ONNX doesn't support negative sampling_ratio if sampling_ratio < 0: warnings.warn("ONNX doesn't support negative sampling ratio," "therefore is is set to 0 in order to be exported.") sampling_ratio = 0 return g.op('RoiAlign', input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio)
def symbolic_multi_label_nms(g, boxes, scores, iou_threshold): boxes = unsqueeze(g, boxes, 0) scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) max_output_per_class = g.op("Constant", value_t=torch.tensor([sys.maxsize], dtype=torch.long)) iou_threshold = g.op("Constant", value_t=torch.tensor([iou_threshold], dtype=torch.float)) nms_out = g.op("NonMaxSuppression", boxes, scores, max_output_per_class, iou_threshold) return squeeze( g, select( g, nms_out, 1, g.op("Constant", value_t=torch.tensor([2], dtype=torch.long))), 1)
def roi_align(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned): batch_indices = _cast_Long( g, squeeze( g, select( g, rois, 1, g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))), 1), False) rois = select( g, rois, 1, g.op("Constant", value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) # TODO: Remove this warning after ONNX opset 16 is supported. if aligned: warnings.warn( "ROIAlign with aligned=True is not supported in ONNX, but will be supported in opset 16. " "The workaround is that the user need apply the patch " "https://github.com/microsoft/onnxruntime/pull/8564 " "and build ONNXRuntime from source.") # ONNX doesn't support negative sampling_ratio if sampling_ratio < 0: warnings.warn( "ONNX doesn't support negative sampling ratio, therefore is set to 0 in order to be exported." ) sampling_ratio = 0 return g.op( "RoiAlign", input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio, )