def test_feast_conv(): x1 = torch.randn(4, 16) x2 = torch.randn(2, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4)) conv = FeaStConv(16, 32, heads=2) assert conv.__repr__() == 'FeaStConv(16, 32, heads=2)' out = conv(x1, edge_index) assert out.size() == (4, 32) assert torch.allclose(conv(x1, adj.t()), out, atol=1e-6) t = '(Tensor, Tensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, edge_index).tolist() == out.tolist() t = '(Tensor, SparseTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit(x1, adj.t()), out, atol=1e-6) adj = adj.sparse_resize((4, 2)) out = conv((x1, x2), edge_index) assert out.size() == (2, 32) assert torch.allclose(conv((x1, x2), adj.t()), out, atol=1e-6) t = '(PairTensor, Tensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit((x1, x2), edge_index).tolist() == out.tolist() t = '(PairTensor, SparseTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit((x1, x2), adj.t()), out, atol=1e-6)
def test_feast_conv(): in_channels, out_channels = (16, 32) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) conv = FeaStConv(in_channels, out_channels, heads=2) assert conv.__repr__() == 'FeaStConv(16, 32, heads=2)' assert conv(x, edge_index).size() == (num_nodes, out_channels)
def test_feast_conv(): in_channels, out_channels = (16, 32) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) conv = FeaStConv(in_channels, out_channels, heads=2) assert conv.__repr__() == 'FeaStConv(16, 32, heads=2)' out = conv(x, edge_index) assert out.size() == (num_nodes, out_channels) jit_conv = conv.jittable(x=x, edge_index=edge_index) jit_conv = torch.jit.script(jit_conv) assert jit_conv(x, edge_index).tolist() == out.tolist()