def test_gmm_conv(separate_gaussians): x1 = torch.randn(4, 8) x2 = torch.randn(2, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index value = torch.rand(row.size(0), 3) adj = SparseTensor(row=row, col=col, value=value, sparse_sizes=(4, 4)) conv = GMMConv(8, 32, dim=3, kernel_size=25, separate_gaussians=separate_gaussians) assert conv.__repr__() == 'GMMConv(8, 32, dim=3)' out = conv(x1, edge_index, value) assert out.size() == (4, 32) assert torch.allclose(conv(x1, edge_index, value, size=(4, 4)), out) assert torch.allclose(conv(x1, adj.t()), out) if is_full_test(): t = '(Tensor, Tensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit(x1, edge_index, value), out) assert torch.allclose(jit(x1, edge_index, value, size=(4, 4)), out) t = '(Tensor, SparseTensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit(x1, adj.t()), out) adj = adj.sparse_resize((4, 2)) conv = GMMConv((8, 16), 32, dim=3, kernel_size=5, separate_gaussians=separate_gaussians) assert conv.__repr__() == 'GMMConv((8, 16), 32, dim=3)' out1 = conv((x1, x2), edge_index, value) out2 = conv((x1, None), edge_index, value, (4, 2)) assert out1.size() == (2, 32) assert out2.size() == (2, 32) assert torch.allclose(conv((x1, x2), edge_index, value, (4, 2)), out1) assert torch.allclose(conv((x1, x2), adj.t()), out1) assert torch.allclose(conv((x1, None), adj.t()), out2) if is_full_test(): t = '(OptPairTensor, Tensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit((x1, x2), edge_index, value), out1) assert torch.allclose(jit((x1, x2), edge_index, value, size=(4, 2)), out1) assert torch.allclose(jit((x1, None), edge_index, value, size=(4, 2)), out2) t = '(OptPairTensor, SparseTensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit((x1, x2), adj.t()), out1) assert torch.allclose(jit((x1, None), adj.t()), out2)
def test_gmm_conv(): in_channels, out_channels = (16, 32) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) pseudo = torch.rand((edge_index.size(1), 3)) conv = GMMConv(in_channels, out_channels, dim=3, kernel_size=25) assert conv.__repr__() == 'GMMConv(16, 32)' out = conv(x, edge_index, pseudo) assert out.size() == (num_nodes, out_channels) jit_conv = conv.jittable() jit_conv = torch.jit.script(jit_conv) assert jit_conv(x, edge_index, pseudo).tolist() == out.tolist() conv = GMMConv(in_channels, out_channels, dim=3, kernel_size=25, separate_gaussians=True) out = conv(x, edge_index, pseudo) assert out.size() == (num_nodes, out_channels) jit_conv = conv.jittable() jit_conv = torch.jit.script(jit_conv) assert jit_conv(x, edge_index, pseudo).tolist() == out.tolist()
def test_gmm_conv(): in_channels, out_channels = (16, 32) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) pseudo = torch.rand((edge_index.size(1), 3)) conv = GMMConv(in_channels, out_channels, dim=3, kernel_size=25) assert conv.__repr__() == 'GMMConv(16, 32)' assert conv(x, edge_index, pseudo).size() == (num_nodes, out_channels)
def test_lazy_gmm_conv(separate_gaussians): x1 = torch.randn(4, 8) x2 = torch.randn(2, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) value = torch.rand(edge_index.size(1), 3) conv = GMMConv(-1, 32, dim=3, kernel_size=25, separate_gaussians=separate_gaussians) assert conv.__repr__() == 'GMMConv(-1, 32, dim=3)' out = conv(x1, edge_index, value) assert out.size() == (4, 32) conv = GMMConv((-1, -1), 32, dim=3, kernel_size=25, separate_gaussians=separate_gaussians) assert conv.__repr__() == 'GMMConv((-1, -1), 32, dim=3)' out = conv((x1, x2), edge_index, value) assert out.size() == (2, 32)