예제 #1
0
def test_gmm_conv(separate_gaussians):
    x1 = torch.randn(4, 8)
    x2 = torch.randn(2, 16)
    edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
    row, col = edge_index
    value = torch.rand(row.size(0), 3)
    adj = SparseTensor(row=row, col=col, value=value, sparse_sizes=(4, 4))

    conv = GMMConv(8,
                   32,
                   dim=3,
                   kernel_size=25,
                   separate_gaussians=separate_gaussians)
    assert conv.__repr__() == 'GMMConv(8, 32, dim=3)'
    out = conv(x1, edge_index, value)
    assert out.size() == (4, 32)
    assert torch.allclose(conv(x1, edge_index, value, size=(4, 4)), out)
    assert torch.allclose(conv(x1, adj.t()), out)

    if is_full_test():
        t = '(Tensor, Tensor, OptTensor, Size) -> Tensor'
        jit = torch.jit.script(conv.jittable(t))
        assert torch.allclose(jit(x1, edge_index, value), out)
        assert torch.allclose(jit(x1, edge_index, value, size=(4, 4)), out)

        t = '(Tensor, SparseTensor, OptTensor, Size) -> Tensor'
        jit = torch.jit.script(conv.jittable(t))
        assert torch.allclose(jit(x1, adj.t()), out)

    adj = adj.sparse_resize((4, 2))
    conv = GMMConv((8, 16),
                   32,
                   dim=3,
                   kernel_size=5,
                   separate_gaussians=separate_gaussians)
    assert conv.__repr__() == 'GMMConv((8, 16), 32, dim=3)'
    out1 = conv((x1, x2), edge_index, value)
    out2 = conv((x1, None), edge_index, value, (4, 2))
    assert out1.size() == (2, 32)
    assert out2.size() == (2, 32)
    assert torch.allclose(conv((x1, x2), edge_index, value, (4, 2)), out1)
    assert torch.allclose(conv((x1, x2), adj.t()), out1)
    assert torch.allclose(conv((x1, None), adj.t()), out2)

    if is_full_test():
        t = '(OptPairTensor, Tensor, OptTensor, Size) -> Tensor'
        jit = torch.jit.script(conv.jittable(t))
        assert torch.allclose(jit((x1, x2), edge_index, value), out1)
        assert torch.allclose(jit((x1, x2), edge_index, value, size=(4, 2)),
                              out1)
        assert torch.allclose(jit((x1, None), edge_index, value, size=(4, 2)),
                              out2)

        t = '(OptPairTensor, SparseTensor, OptTensor, Size) -> Tensor'
        jit = torch.jit.script(conv.jittable(t))
        assert torch.allclose(jit((x1, x2), adj.t()), out1)
        assert torch.allclose(jit((x1, None), adj.t()), out2)
예제 #2
0
def test_gmm_conv():
    in_channels, out_channels = (16, 32)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, in_channels))
    pseudo = torch.rand((edge_index.size(1), 3))

    conv = GMMConv(in_channels, out_channels, dim=3, kernel_size=25)
    assert conv.__repr__() == 'GMMConv(16, 32)'
    out = conv(x, edge_index, pseudo)
    assert out.size() == (num_nodes, out_channels)

    jit_conv = conv.jittable()
    jit_conv = torch.jit.script(jit_conv)
    assert jit_conv(x, edge_index, pseudo).tolist() == out.tolist()

    conv = GMMConv(in_channels,
                   out_channels,
                   dim=3,
                   kernel_size=25,
                   separate_gaussians=True)
    out = conv(x, edge_index, pseudo)
    assert out.size() == (num_nodes, out_channels)

    jit_conv = conv.jittable()
    jit_conv = torch.jit.script(jit_conv)
    assert jit_conv(x, edge_index, pseudo).tolist() == out.tolist()
예제 #3
0
def test_gmm_conv():
    in_channels, out_channels = (16, 32)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    num_nodes = edge_index.max().item() + 1
    x = torch.randn((num_nodes, in_channels))
    pseudo = torch.rand((edge_index.size(1), 3))

    conv = GMMConv(in_channels, out_channels, dim=3, kernel_size=25)
    assert conv.__repr__() == 'GMMConv(16, 32)'
    assert conv(x, edge_index, pseudo).size() == (num_nodes, out_channels)
예제 #4
0
def test_lazy_gmm_conv(separate_gaussians):
    x1 = torch.randn(4, 8)
    x2 = torch.randn(2, 16)
    edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]])
    value = torch.rand(edge_index.size(1), 3)

    conv = GMMConv(-1,
                   32,
                   dim=3,
                   kernel_size=25,
                   separate_gaussians=separate_gaussians)
    assert conv.__repr__() == 'GMMConv(-1, 32, dim=3)'
    out = conv(x1, edge_index, value)
    assert out.size() == (4, 32)

    conv = GMMConv((-1, -1),
                   32,
                   dim=3,
                   kernel_size=25,
                   separate_gaussians=separate_gaussians)
    assert conv.__repr__() == 'GMMConv((-1, -1), 32, dim=3)'
    out = conv((x1, x2), edge_index, value)
    assert out.size() == (2, 32)