def test_signed_conv(): in_channels, out_channels = (16, 32) pos_ei = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) neg_ei = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = pos_ei.max().item() + 1 x = torch.randn((num_nodes, in_channels)) conv = SignedConv(in_channels, out_channels, first_aggr=True) assert conv.__repr__() == 'SignedConv(16, 32, first_aggr=True)' out1 = conv(x, pos_ei, neg_ei) assert out1.size() == (num_nodes, 2 * out_channels) jit_conv = conv.jittable(x=x, pos_edge_index=pos_ei, neg_edge_index=neg_ei) jit_conv = torch.jit.script(jit_conv) assert jit_conv(x, pos_ei, neg_ei).tolist() == out1.tolist() conv = SignedConv(out_channels, out_channels, first_aggr=False) assert conv.__repr__() == 'SignedConv(32, 32, first_aggr=False)' out2 = conv(out1, pos_ei, neg_ei) assert out2.size() == (num_nodes, 2 * out_channels) jit_conv = conv.jittable(x=out1, pos_edge_index=pos_ei, neg_edge_index=neg_ei) jit_conv = torch.jit.script(jit_conv) assert jit_conv(out1, pos_ei, neg_ei).tolist() == out2.tolist()
def test_signed_conv(): x = torch.randn(4, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4)) conv1 = SignedConv(16, 32, first_aggr=True) assert conv1.__repr__() == 'SignedConv(16, 32, first_aggr=True)' conv2 = SignedConv(32, 48, first_aggr=False) assert conv2.__repr__() == 'SignedConv(32, 48, first_aggr=False)' out1 = conv1(x, edge_index, edge_index) assert out1.size() == (4, 64) assert conv1(x, adj.t(), adj.t()).tolist() == out1.tolist() out2 = conv2(out1, edge_index, edge_index) assert out2.size() == (4, 96) assert conv2(out1, adj.t(), adj.t()).tolist() == out2.tolist() if is_full_test(): t = '(Tensor, Tensor, Tensor) -> Tensor' jit1 = torch.jit.script(conv1.jittable(t)) jit2 = torch.jit.script(conv2.jittable(t)) assert jit1(x, edge_index, edge_index).tolist() == out1.tolist() assert jit2(out1, edge_index, edge_index).tolist() == out2.tolist() t = '(Tensor, SparseTensor, SparseTensor) -> Tensor' jit1 = torch.jit.script(conv1.jittable(t)) jit2 = torch.jit.script(conv2.jittable(t)) assert jit1(x, adj.t(), adj.t()).tolist() == out1.tolist() assert jit2(out1, adj.t(), adj.t()).tolist() == out2.tolist() adj = adj.sparse_resize((4, 2)) assert torch.allclose(conv1((x, x[:2]), edge_index, edge_index), out1[:2], atol=1e-6) assert torch.allclose(conv1((x, x[:2]), adj.t(), adj.t()), out1[:2], atol=1e-6) assert torch.allclose(conv2((out1, out1[:2]), edge_index, edge_index), out2[:2], atol=1e-6) assert torch.allclose(conv2((out1, out1[:2]), adj.t(), adj.t()), out2[:2], atol=1e-6) if is_full_test(): t = '(PairTensor, Tensor, Tensor) -> Tensor' jit1 = torch.jit.script(conv1.jittable(t)) jit2 = torch.jit.script(conv2.jittable(t)) assert torch.allclose(jit1((x, x[:2]), edge_index, edge_index), out1[:2], atol=1e-6) assert torch.allclose(jit2((out1, out1[:2]), edge_index, edge_index), out2[:2], atol=1e-6) t = '(PairTensor, SparseTensor, SparseTensor) -> Tensor' jit1 = torch.jit.script(conv1.jittable(t)) jit2 = torch.jit.script(conv2.jittable(t)) assert torch.allclose(jit1((x, x[:2]), adj.t(), adj.t()), out1[:2], atol=1e-6) assert torch.allclose(jit2((out1, out1[:2]), adj.t(), adj.t()), out2[:2], atol=1e-6)
def test_signed_conv(): in_channels, out_channels = (16, 32) pos_ei = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) neg_ei = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = pos_ei.max().item() + 1 x = torch.randn((num_nodes, in_channels)) conv = SignedConv(in_channels, out_channels, first_aggr=True) assert conv.__repr__() == 'SignedConv(16, 32, first_aggr=True)' x = conv(x, pos_ei, neg_ei) assert x.size() == (num_nodes, 2 * out_channels) conv = SignedConv(out_channels, out_channels, first_aggr=False) assert conv.__repr__() == 'SignedConv(32, 32, first_aggr=False)' assert conv(x, pos_ei, neg_ei).size() == (num_nodes, 2 * out_channels)