if 'n_trials' not in locals(): n_trials = 60000 max_steps = int(3 * (env.height + env.width)) eps = 1. eps_end = 0.005 eps_decay = 0.9995 action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent = Agent(state_size, action_size) with path(torch_training.Nets, "navigator_checkpoint1000.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) record_images = False frame_step = 0 for trials in range(1, n_trials + 1): # Reset environment obs, info = env.reset(True, True) env_renderer.reset() # Build agent specific observations for a in range(env.get_num_agents()): agent_obs[a] = agent_obs[a] = normalize_observation(obs[a], tree_depth, observation_radius=10) # Reset score and done
def main(argv): try: opts, args = getopt.getopt(argv, "n:", ["n_trials="]) except getopt.GetoptError: print('test_navigation_single_agent.py -n <n_trials>') sys.exit(2) for opt, arg in opts: if opt in ('-n', '--n_trials'): n_trials = int(arg) random.seed(1) np.random.seed(1) ######## TEST SET SELECTION - PARAMETERS ######## test_multi_agent_setup = 1 # 1 for Medium size test, 2 for Big size test test_n_agents = 5 # Number of agents to test (3 - 5 - 7 for Medium, 5 - 7 - 10 for Big) test_malfunctions_enabled = True # Malfunctions enabled? test_agents_one_speed = True # Test agents with the same speed (1) or with 4 different speeds? ################################################# # Medium size if test_multi_agent_setup == 1: x_dim = 16*3 y_dim = 9*3 max_num_cities = 5 max_rails_between_cities = 2 max_rails_in_city = 3 # Big size if test_multi_agent_setup == 2: x_dim = 16*4 y_dim = 9*4 max_num_cities = 9 max_rails_between_cities = 5 max_rails_in_city = 5 stochastic_data = {'malfunction_rate': 80, # Rate of malfunction occurence of single agent 'min_duration': 15, # Minimal duration of malfunction 'max_duration': 50 # Max duration of malfunction } # Custom observation builder tree_depth = 2 TreeObservation = TreeObsForRailEnv(max_depth=tree_depth, predictor = ShortestPathPredictorForRailEnv(20)) np.savetxt(fname=path.join('NetsTest' , 'info.txt'), X=[x_dim,y_dim,test_n_agents,max_num_cities,max_rails_between_cities,max_rails_in_city,tree_depth],delimiter=';') # Different agent types (trains) with different speeds. if test_agents_one_speed: speed_ration_map = {1.: 1., # Fast passenger train 1. / 2.: 0.0, # Fast freight train 1. / 3.: 0.0, # Slow commuter train 1. / 4.: 0.0} # Slow freight train else: speed_ration_map = {1.: 0.25, # Fast passenger train 1. / 2.: 0.25, # Fast freight train 1. / 3.: 0.25, # Slow commuter train 1. / 4.: 0.25} # Slow freight train if test_malfunctions_enabled: env = RailEnv(width=x_dim, height=y_dim, rail_generator=sparse_rail_generator(max_num_cities=max_num_cities, # Number of cities in map (where train stations are) seed=14, # Random seed grid_mode=False, max_rails_between_cities=max_rails_between_cities, max_rails_in_city=max_rails_in_city), schedule_generator=sparse_schedule_generator(speed_ration_map), malfunction_generator_and_process_data=malfunction_from_params(stochastic_data), number_of_agents=test_n_agents, obs_builder_object=TreeObservation) else: env = RailEnv(width=x_dim, height=y_dim, rail_generator=sparse_rail_generator(max_num_cities=max_num_cities, # Number of cities in map (where train stations are) seed=14, # Random seed grid_mode=False, max_rails_between_cities=max_rails_between_cities, max_rails_in_city=max_rails_in_city), schedule_generator=sparse_schedule_generator(speed_ration_map), number_of_agents=test_n_agents, obs_builder_object=TreeObservation) env.reset() #env_renderer = RenderTool(env, gl="PILSVG", ) env_renderer = RenderTool(env, gl="PILSVG", agent_render_variant=AgentRenderVariant.AGENT_SHOWS_OPTIONS_AND_BOX, show_debug=False, screen_height=(1080*0.8), # Adjust these parameters to fit your resolution screen_width=(1920*0.8)) num_features_per_node = env.obs_builder.observation_dim nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = num_features_per_node * nr_nodes action_size = 5 # We set the number of episodes we would like to train on if 'n_trials' not in locals(): n_trials = 15000 # max_steps computation speed_weighted_mean = 0 for key in speed_ration_map.keys(): speed_weighted_mean += key * speed_ration_map[key] #max_steps = int(3 * (env.height + env.width)) max_steps = int((1/speed_weighted_mean) * 3 * (env.height + env.width)) #eps = 1. #eps_end = 0.005 #eps_decay = 0.9995 # And some variables to keep track of the performance action_dict = dict() final_action_dict = dict() action_prob_list = [] scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] scores_list = [] deadlock_list =[] dones_list_window = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() # Useless agent = Agent(state_size, action_size) # LOAD MODEL WEIGHTS TO TEST agent.qnetwork_local.load_state_dict(torch.load(path.join('NetsTest' , 'navigator_checkpoint3800_multi10_deadlock_global10.pth'))) record_images = False frame_step = 0 for trials in range(1, n_trials + 1): # Reset environment obs, info = env.reset()#(True, True) env_renderer.reset() # Build agent specific observations for a in range(env.get_num_agents()): agent_obs[a] = agent_obs[a] = normalize_observation(obs[a], tree_depth, observation_radius=10) # Reset score and done score = 0 env_done = 0 # Run episode for step in range(max_steps): # Action for a in range(env.get_num_agents()): if info['action_required'][a]: action = agent.act(agent_obs[a], eps=0.) action_prob[action] += 1 else: action = 0 action_dict.update({a: action}) # Environment step obs, all_rewards, done, deadlocks, info = env.step(action_dict) env_renderer.render_env(show=True, show_predictions=True, show_observations=False) # Build agent specific observations and normalize for a in range(env.get_num_agents()): if obs[a]: agent_obs[a] = normalize_observation(obs[a], tree_depth, observation_radius=10) score += all_rewards[a] / env.get_num_agents() if done['__all__']: break # Collection information about training tasks_finished = 0 for _idx in range(env.get_num_agents()): if done[_idx] == 1: tasks_finished += 1 done_window.append(tasks_finished / max(1, env.get_num_agents())) scores_window.append(score / max_steps) # save most recent score scores.append(np.mean(scores_window)) dones_list.append(tasks_finished / max(1, env.get_num_agents())) dones_list_window.append((np.mean(done_window))) scores_list.append(score / max_steps) deadlock_list.append(deadlocks.count(1)/max(1, env.get_num_agents())) if (np.sum(action_prob) == 0): action_prob_normalized = [0] * action_size else: action_prob_normalized = action_prob / np.sum(action_prob) print( '\rTesting {} Agents on ({},{}).\t Episode {}\t Score: {:.3f}\tDones: {:.2f}%\tDeadlocks: {:.2f}\t Action Probabilities: \t {}'.format( env.get_num_agents(), x_dim, y_dim, trials, score / max_steps, 100 * tasks_finished / max(1, env.get_num_agents()), deadlocks.count(1)/max(1, env.get_num_agents()), action_prob_normalized), end=" ") #if trials % 100 == 0: action_prob_list.append(action_prob_normalized) action_prob = [0] * action_size if trials % 50 == 0: np.savetxt(fname=path.join('NetsTest' , 'test_metrics.csv'), X=np.transpose(np.asarray([scores_list,scores,dones_list,dones_list_window,deadlock_list])), delimiter=';',newline='\n') np.savetxt(fname=path.join('NetsTest' , 'test_action_prob.csv'), X=np.asarray(action_prob_list), delimiter=';',newline='\n')
def main(argv): try: opts, args = getopt.getopt(argv, "n:", ["n_trials="]) except getopt.GetoptError: print('training_navigation.py -n <n_trials>') sys.exit(2) for opt, arg in opts: if opt in ('-n', '--n_trials'): n_trials = int(arg) random.seed(1) np.random.seed(1) #### Choose the desired setup #### multi_agent_setup = 1 malfunctions_enabled = False agents_one_speed = True ################################## # Single agent (1) if multi_agent_setup == 1: x_dim = 35 y_dim = 35 n_agents = 1 max_num_cities = 3 max_rails_between_cities = 2 max_rails_in_city = 3 # Multi agent (3) if multi_agent_setup == 3: x_dim = 40 y_dim = 40 n_agents = 3 max_num_cities = 4 max_rails_between_cities = 2 max_rails_in_city = 3 # Multi agent (5) if multi_agent_setup == 5: x_dim = 16 * 3 y_dim = 9 * 3 n_agents = 5 max_num_cities = 5 max_rails_between_cities = 2 max_rails_in_city = 3 # Multi agent (10) if multi_agent_setup == 10: x_dim = 16 * 4 y_dim = 9 * 4 n_agents = 10 max_num_cities = 9 max_rails_between_cities = 5 max_rails_in_city = 5 # Use a the malfunction generator to break agents from time to time stochastic_data = { 'malfunction_rate': 80, # Rate of malfunction occurence of single agent 'min_duration': 15, # Minimal duration of malfunction 'max_duration': 50 # Max duration of malfunction } # Custom observation builder tree_depth = 2 TreeObservation = TreeObsForRailEnv( max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv(20)) np.savetxt(fname=path.join('Nets', 'info.txt'), X=[ x_dim, y_dim, n_agents, max_num_cities, max_rails_between_cities, max_rails_in_city, tree_depth ], delimiter=';') # Different agent types (trains) with different speeds. if agents_one_speed: speed_ration_map = { 1.: 1., # Fast passenger train 1. / 2.: 0.0, # Fast freight train 1. / 3.: 0.0, # Slow commuter train 1. / 4.: 0.0 } # Slow freight train else: speed_ration_map = { 1.: 0.25, # Fast passenger train 1. / 2.: 0.25, # Fast freight train 1. / 3.: 0.25, # Slow commuter train 1. / 4.: 0.25 } # Slow freight train if malfunctions_enabled: env = RailEnv( width=x_dim, height=y_dim, rail_generator=sparse_rail_generator( max_num_cities=max_num_cities, # Number of cities in map (where train stations are) seed=14, # Random seed grid_mode=False, max_rails_between_cities=max_rails_between_cities, max_rails_in_city=max_rails_in_city), schedule_generator=sparse_schedule_generator(speed_ration_map), malfunction_generator_and_process_data=malfunction_from_params( stochastic_data), number_of_agents=n_agents, obs_builder_object=TreeObservation) else: env = RailEnv( width=x_dim, height=y_dim, rail_generator=sparse_rail_generator( max_num_cities=max_num_cities, # Number of cities in map (where train stations are) seed=14, # Random seed grid_mode=False, max_rails_between_cities=max_rails_between_cities, max_rails_in_city=max_rails_in_city), schedule_generator=sparse_schedule_generator(speed_ration_map), number_of_agents=n_agents, obs_builder_object=TreeObservation) env.reset(True, True) # After training we want to render the results so we also load a renderer env_renderer = RenderTool( env, gl="PILSVG", screen_height=800, # Adjust these parameters to fit your resolution screen_width=900) # Given the depth of the tree observation and the number of features per node we get the following state_size num_features_per_node = env.obs_builder.observation_dim nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = num_features_per_node * nr_nodes # The action space of flatland is 5 discrete actions action_size = 5 # We set the number of episodes we would like to train on if 'n_trials' not in locals(): n_trials = 15000 # And the max number of steps we want to take per episode max_steps = int(3 * (env.height + env.width)) # Define training parameters eps = 1. eps_end = 0.005 eps_decay = 0.998 # And some variables to keep track of the progress action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) deadlock_window = deque(maxlen=100) deadlock_average = [] scores = [] dones_list = [] #Metrics eps_list = [] action_prob_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent_obs_buffer = [None] * env.get_num_agents() agent_action_buffer = [2] * env.get_num_agents() cummulated_reward = np.zeros(env.get_num_agents()) update_values = False # Now we load a Double dueling DQN agent agent = Agent(state_size, action_size) for trials in range(1, n_trials + 1): #print(torch.cuda.current_device()) # Reset environment obs, info = env.reset(True, True) #env_renderer.reset() # Build agent specific observations for a in range(env.get_num_agents()): if obs[a]: agent_obs[a] = normalize_observation(obs[a], tree_depth, observation_radius=10) agent_obs_buffer[a] = agent_obs[a].copy() # Reset score and done score = 0 env_done = 0 # Run episode for step in range(max_steps): # Action for a in range(env.get_num_agents()): if info['action_required'][a]: # If an action is require, we want to store the obs a that step as well as the action update_values = True action = agent.act(agent_obs[a], eps=eps) action_prob[action] += 1 else: update_values = False action = 0 action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, deadlocks, info = env.step( action_dict) #env_renderer.render_env(show=True, show_predictions=True, show_observations=True) # Update replay buffer and train agent for a in range(env.get_num_agents()): # Only update the values when we are done or when an action was taken and thus relevant information is present if update_values or done[a]: agent.step(agent_obs_buffer[a], agent_action_buffer[a], all_rewards[a], agent_obs[a], done[a]) cummulated_reward[a] = 0. agent_obs_buffer[a] = agent_obs[a].copy() agent_action_buffer[a] = action_dict[a] if next_obs[a]: agent_obs[a] = normalize_observation(next_obs[a], tree_depth, observation_radius=10) score += all_rewards[a] / env.get_num_agents() # Copy observation if done['__all__']: env_done = 1 break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon # Collection information about training tasks_finished = 0 for _idx in range(env.get_num_agents()): if done[_idx] == 1: tasks_finished += 1 done_window.append(tasks_finished / max(1, env.get_num_agents())) scores_window.append(score / max_steps) # save most recent score scores.append(np.mean(scores_window)) deadlock_window.append( deadlocks.count(1) / max(1, env.get_num_agents())) deadlock_average.append(np.mean(deadlock_window)) dones_list.append((np.mean(done_window))) eps_list.append(eps) action_prob_list.append(action_prob / np.sum(action_prob)) print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f} %\tDeadlocks: {:.2f} \tEpsilon: {:.2f} \t Action Probabilities: \t {}' .format(env.get_num_agents(), x_dim, y_dim, trials, np.mean(scores_window), 100 * np.mean(done_window), np.mean(deadlock_window), eps, action_prob / np.sum(action_prob)), end=" ") if trials % 100 == 0: print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}' .format(env.get_num_agents(), x_dim, y_dim, trials, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob))) torch.save( agent.qnetwork_local.state_dict(), path.join('Nets', ('navigator_checkpoint' + str(trials) + '.pth'))) action_prob = [1] * action_size if trials % 50 == 0: np.savetxt(fname=path.join('Nets', 'metrics.csv'), X=np.transpose( np.asarray([ scores, dones_list, deadlock_average, eps_list ])), delimiter=';', newline='\n') np.savetxt(fname=path.join('Nets', 'action_prob.csv'), X=np.asarray(action_prob_list), delimiter=';', newline='\n') # Plot overall training progress at the end plt.plot(scores) plt.show()
def main(argv): try: opts, args = getopt.getopt(argv, "n:", ["n_trials="]) except getopt.GetoptError: print('training_navigation.py -n <n_trials>') sys.exit(2) for opt, arg in opts: if opt in ('-n', '--n_trials'): n_trials = int(arg) random.seed(1) np.random.seed(1) # Parameters for the Environment x_dim = 35 y_dim = 35 n_agents = 10 # Use a the malfunction generator to break agents from time to time stochastic_data = {'malfunction_rate': 8000, # Rate of malfunction occurence of single agent 'min_duration': 15, # Minimal duration of malfunction 'max_duration': 50 # Max duration of malfunction } # Custom observation builder TreeObservation = TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv(30)) # Different agent types (trains) with different speeds. speed_ration_map = {1.: 0.25, # Fast passenger train 1. / 2.: 0.25, # Fast freight train 1. / 3.: 0.25, # Slow commuter train 1. / 4.: 0.25} # Slow freight train env = RailEnv(width=x_dim, height=y_dim, rail_generator=sparse_rail_generator(max_num_cities=3, # Number of cities in map (where train stations are) seed=1, # Random seed grid_mode=False, max_rails_between_cities=2, max_rails_in_city=3), schedule_generator=sparse_schedule_generator(speed_ration_map), number_of_agents=n_agents, malfunction_generator_and_process_data=malfunction_from_params(stochastic_data), obs_builder_object=TreeObservation) # After training we want to render the results so we also load a renderer env_renderer = RenderTool(env, gl="PILSVG", ) # Given the depth of the tree observation and the number of features per node we get the following state_size num_features_per_node = env.obs_builder.observation_dim tree_depth = 2 nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = num_features_per_node * nr_nodes # The action space of flatland is 5 discrete actions action_size = 5 # We set the number of episodes we would like to train on if 'n_trials' not in locals(): n_trials = 15000 # And the max number of steps we want to take per episode max_steps = int(4 * 2 * (20 + env.height + env.width)) # Define training parameters eps = 1. eps_end = 0.005 eps_decay = 0.998 # And some variables to keep track of the progress action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent_obs_buffer = [None] * env.get_num_agents() agent_action_buffer = [2] * env.get_num_agents() cummulated_reward = np.zeros(env.get_num_agents()) update_values = [False] * env.get_num_agents() # Now we load a Double dueling DQN agent agent = Agent(state_size, action_size) for trials in range(1, n_trials + 1): # Reset environment obs, info = env.reset(True, True) env_renderer.reset() # Build agent specific observations for a in range(env.get_num_agents()): if obs[a]: agent_obs[a] = normalize_observation(obs[a], tree_depth, observation_radius=10) agent_obs_buffer[a] = agent_obs[a].copy() # Reset score and done score = 0 env_done = 0 # Run episode while True: # Action for a in range(env.get_num_agents()): if info['action_required'][a]: # If an action is require, we want to store the obs a that step as well as the action update_values[a] = True action = agent.act(agent_obs[a], eps=eps) action_prob[action] += 1 else: update_values[a] = False action = 0 action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, info = env.step(action_dict) # Update replay buffer and train agent for a in range(env.get_num_agents()): # Only update the values when we are done or when an action was taken and thus relevant information is present if update_values[a] or done[a]: agent.step(agent_obs_buffer[a], agent_action_buffer[a], all_rewards[a], agent_obs[a], done[a]) cummulated_reward[a] = 0. agent_obs_buffer[a] = agent_obs[a].copy() agent_action_buffer[a] = action_dict[a] if next_obs[a]: agent_obs[a] = normalize_observation(next_obs[a], tree_depth, observation_radius=10) score += all_rewards[a] / env.get_num_agents() # Copy observation if done['__all__']: env_done = 1 break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon # Collection information about training tasks_finished = 0 for current_agent in env.agents: if current_agent.status == RailAgentStatus.DONE_REMOVED: tasks_finished += 1 done_window.append(tasks_finished / max(1, env.get_num_agents())) scores_window.append(score / max_steps) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), x_dim, y_dim, trials, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob)), end=" ") if trials % 100 == 0: print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), x_dim, y_dim, trials, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), './Nets/navigator_checkpoint' + str(trials) + '.pth') action_prob = [1] * action_size # Plot overall training progress at the end plt.plot(scores) plt.show()
def main(argv): try: opts, args = getopt.getopt(argv, "n:", ["n_episodes="]) except getopt.GetoptError: print('training_navigation.py -n <n_episodes>') sys.exit(2) for opt, arg in opts: if opt in ('-n', '--n_episodes'): n_episodes = int(arg) ## Initialize the random random.seed(1) np.random.seed(1) # Initialize a random map with a random number of agents x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) tree_depth = 2 print("main2") demo = False # Get an observation builder and predictor observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv()) env = RailEnv(width=x_dim, height=y_dim, rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0), schedule_generator=complex_schedule_generator(), obs_builder_object=observation_helper, number_of_agents=n_agents) env.reset(True, True) handle = env.get_agent_handles() features_per_node = env.obs_builder.observation_dim nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = 2 * features_per_node * nr_nodes # We will use two time steps per observation --> 2x state_size action_size = 5 # We set the number of episodes we would like to train on if 'n_episodes' not in locals(): n_episodes = 60000 # Set max number of steps per episode as well as other training relevant parameter max_steps = int(3 * (env.height + env.width)) eps = 1. eps_end = 0.005 eps_decay = 0.9995 action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) time_obs = deque(maxlen=2) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() # Initialize the agent agent = Agent(state_size, action_size) # Here you can pre-load an agent if False: with path(torch_training.Nets, "avoid_checkpoint500.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) # Do training over n_episodes for episodes in range(1, n_episodes + 1): """ Training Curriculum: In order to get good generalization we change the number of agents and the size of the levels every 50 episodes. """ if episodes % 50 == 0: x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) env = RailEnv(width=x_dim, height=y_dim, rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0), schedule_generator=complex_schedule_generator(), obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()), number_of_agents=n_agents) # Adjust the parameters according to the new env. max_steps = int(3 * (env.height + env.width)) agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() # Reset environment obs, info = env.reset(True, True) # Setup placeholder for finals observation of a single agent. This is necessary because agents terminate at # different times during an episode final_obs = agent_obs.copy() final_obs_next = agent_next_obs.copy() # Build agent specific observations for a in range(env.get_num_agents()): data, distance, agent_data = split_tree_into_feature_groups(obs[a], tree_depth) data = norm_obs_clip(data) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) # Accumulate two time steps of observation (Here just twice the first state) for i in range(2): time_obs.append(obs) # Build the agent specific double ti for a in range(env.get_num_agents()): agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) score = 0 env_done = 0 # Run episode for step in range(max_steps): # Action for a in range(env.get_num_agents()): if demo: eps = 0 # action = agent.act(np.array(obs[a]), eps=eps) action = agent.act(agent_obs[a], eps=eps) action_prob[action] += 1 action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) for a in range(env.get_num_agents()): data, distance, agent_data = split_tree_into_feature_groups(next_obs[a], tree_depth) data = norm_obs_clip(data) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) time_obs.append(next_obs) # Update replay buffer and train agent for a in range(env.get_num_agents()): agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) if done[a]: final_obs[a] = agent_obs[a].copy() final_obs_next[a] = agent_next_obs[a].copy() final_action_dict.update({a: action_dict[a]}) if not demo and not done[a]: agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a]) score += all_rewards[a] / env.get_num_agents() agent_obs = agent_next_obs.copy() if done['__all__']: env_done = 1 for a in range(env.get_num_agents()): agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a]) break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon done_window.append(env_done) scores_window.append(score / max_steps) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), x_dim, y_dim, episodes, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob)), end=" ") if episodes % 100 == 0: print( '\rTraining {} Agents.\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), episodes, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), './Nets/avoid_checkpoint' + str(episodes) + '.pth') action_prob = [1] * action_size plt.plot(scores) plt.show()
features_per_node = 9 tree_depth = 3 nodes = 0 for i in range(tree_depth + 1): nodes += np.power(4, i) state_size = features_per_node * nodes action_size = 5 action_dict = dict() nr_trials_per_test = 100 test_results = [] test_times = [] test_dones = [] sequential_agent_test = False # Load your agent agent = Agent(state_size, action_size) agent.qnetwork_local.load_state_dict( torch.load('../torch_training/Nets/avoid_checkpoint500.pth')) # Load the necessary Observation Builder and Predictor predictor = ShortestPathPredictorForRailEnv() observation_builder = TreeObsForRailEnv(max_depth=tree_depth, predictor=predictor) start_time_scoring = time.time() score_board = [] for test_nr in parameters: current_parameters = parameters[test_nr] test_score, test_dones, test_time = run_test( current_parameters,