def make_model(config: ConfigSchema) -> MultiRelationEmbedder: if config.dynamic_relations: if len(config.relations) != 1: raise RuntimeError( "Dynamic relations are enabled, so there should only be one " "entry in config.relations with config for all relations.") try: relation_type_storage = RELATION_TYPE_STORAGES.make_instance( config.entity_path) num_dynamic_rels = relation_type_storage.load_count() except CouldNotLoadData: raise RuntimeError( "Dynamic relations are enabled, so there should be a file called " "dynamic_rel_count.txt in the entity path with their count.") else: num_dynamic_rels = 0 if config.num_batch_negs > 0 and config.batch_size % config.num_batch_negs != 0: raise RuntimeError( "Batch size (%d) must be a multiple of num_batch_negs (%d)" % (config.batch_size, config.num_batch_negs)) lhs_operators: List[Optional[Union[AbstractOperator, AbstractDynamicOperator]]] = [] rhs_operators: List[Optional[Union[AbstractOperator, AbstractDynamicOperator]]] = [] for r in config.relations: lhs_operators.append( instantiate_operator(r.operator, Side.LHS, num_dynamic_rels, config.entity_dimension(r.lhs))) rhs_operators.append( instantiate_operator(r.operator, Side.RHS, num_dynamic_rels, config.entity_dimension(r.rhs))) comparator_class = COMPARATORS.get_class(config.comparator) comparator = comparator_class() if config.bias: comparator = BiasedComparator(comparator) return MultiRelationEmbedder( config.dimension, config.relations, config.entities, num_uniform_negs=config.num_uniform_negs, num_batch_negs=config.num_batch_negs, disable_lhs_negs=config.disable_lhs_negs, disable_rhs_negs=config.disable_rhs_negs, lhs_operators=lhs_operators, rhs_operators=rhs_operators, comparator=comparator, global_emb=config.global_emb, max_norm=config.max_norm, num_dynamic_rels=num_dynamic_rels, half_precision=config.half_precision, )
def init_embeddings(target: str, config: ConfigSchema, *, version: int = 0): with open(os.path.join(target, "checkpoint_version.txt"), "xt") as tf: tf.write("%d" % version) for entity_name, entity in config.entities.items(): for partition in range(entity.num_partitions): with open( os.path.join( config.entity_path, "entity_count_%s_%d.txt" % (entity_name, partition), ), "rt", ) as tf: entity_count = int(tf.read().strip()) with h5py.File( os.path.join( target, "embeddings_%s_%d.v%d.h5" % (entity_name, partition, version), ), "x", ) as hf: hf.attrs["format_version"] = 1 hf.create_dataset( "embeddings", data=np.random.randn(entity_count, config.entity_dimension(entity_name)), ) with h5py.File(os.path.join(target, "model.v%d.h5" % version), "x") as hf: hf.attrs["format_version"] = 1
def write_new_version( self, config: ConfigSchema, entity_counts: Dict[EntityName, List[int]], embedding_storage_freelist: Dict[EntityName, Set[torch.FloatStorage]], ) -> None: metadata = self.collect_metadata() new_version = self._version(True) if self.partition_client is not None: for entity, econf in config.entities.items(): dimension = config.entity_dimension(entity) for part in range(self.rank, econf.num_partitions, self.num_machines): logger.debug(f"Getting {entity} {part}") count = entity_counts[entity][part] s = next(iter(embedding_storage_freelist[entity])) out = torch.FloatTensor(s).view(-1, dimension)[:count] embs, serialized_optim_state = self.partition_client.get( entity, part, out=out) logger.debug(f"Done getting {entity} {part}") logger.debug(f"Saving {entity} {part} v{new_version}") self.storage.save_entity_partition( new_version, entity, part, embs, serialized_optim_state, metadata, ) logger.debug(f"Done saving {entity} {part} v{new_version}")
def __init__( self, config: ConfigSchema, model: Optional[MultiRelationEmbedder] = None, trainer: Optional[AbstractBatchProcessor] = None, evaluator: Optional[AbstractBatchProcessor] = None, rank: Rank = SINGLE_TRAINER, subprocess_init: Optional[Callable[[], None]] = None, stats_handler: StatsHandler = NOOP_STATS_HANDLER, ): super().__init__( config, model, trainer, evaluator, rank, subprocess_init, stats_handler ) assert config.num_gpus > 0 if not CPP_INSTALLED: raise RuntimeError( "GPU support requires C++ installation: " "install with C++ support by running " "`PBG_INSTALL_CPP=1 pip install .`" ) if config.half_precision: for entity in config.entities: # need this for tensor cores to work assert config.entity_dimension(entity) % 8 == 0 assert config.batch_size % 8 == 0 assert config.num_batch_negs % 8 == 0 assert config.num_uniform_negs % 8 == 0 assert len(self.holder.lhs_unpartitioned_types) == 0 assert len(self.holder.rhs_unpartitioned_types) == 0 num_edge_chunks = self.iteration_manager.num_edge_chunks max_edges = 0 for edge_path in config.edge_paths: edge_storage = EDGE_STORAGES.make_instance(edge_path) for lhs_part in range(self.holder.nparts_lhs): for rhs_part in range(self.holder.nparts_rhs): num_edges = edge_storage.get_number_of_edges(lhs_part, rhs_part) num_edges_per_chunk = div_roundup(num_edges, num_edge_chunks) max_edges = max(max_edges, num_edges_per_chunk) self.shared_lhs = allocate_shared_tensor((max_edges,), dtype=torch.long) self.shared_rhs = allocate_shared_tensor((max_edges,), dtype=torch.long) self.shared_rel = allocate_shared_tensor((max_edges,), dtype=torch.long) # fork early for HOGWILD threads logger.info("Creating GPU workers...") torch.set_num_threads(1) self.gpu_pool = GPUProcessPool( config.num_gpus, subprocess_init, {s for ss in self.embedding_storage_freelist.values() for s in ss} | { self.shared_lhs.storage(), self.shared_rhs.storage(), self.shared_rel.storage(), }, )
def assertCheckpointWritten(self, config: ConfigSchema, *, version: int) -> None: with open( os.path.join(config.checkpoint_path, "checkpoint_version.txt"), "rt") as tf: self.assertEqual(version, int(tf.read().strip())) with open(os.path.join(config.checkpoint_path, "config.json"), "rt") as tf: self.assertEqual(json.load(tf), config.to_dict()) with h5py.File( os.path.join(config.checkpoint_path, "model.v%d.h5" % version), "r") as hf: self.assertHasMetadata(hf, config) self.assertIsModelParameters(hf["model"]) self.assertIsOptimStateDict(hf["optimizer/state_dict"]) with open(os.path.join(config.checkpoint_path, "training_stats.json"), "rt") as tf: for line in tf: self.assertIsStatsDict(json.loads(line)) for entity_name, entity in config.entities.items(): for partition in range(entity.num_partitions): with open( os.path.join( config.entity_path, "entity_count_%s_%d.txt" % (entity_name, partition), ), "rt", ) as tf: entity_count = int(tf.read().strip()) with h5py.File( os.path.join( config.checkpoint_path, "embeddings_%s_%d.v%d.h5" % (entity_name, partition, version), ), "r", ) as hf: self.assertHasMetadata(hf, config) self.assertIsEmbeddings( hf["embeddings"], entity_count, config.entity_dimension(entity_name), ) self.assertIsOptimStateDict(hf["optimizer/state_dict"])
def __init__( # noqa self, config: ConfigSchema, model: Optional[MultiRelationEmbedder] = None, trainer: Optional[AbstractBatchProcessor] = None, evaluator: Optional[AbstractBatchProcessor] = None, rank: Rank = SINGLE_TRAINER, subprocess_init: Optional[Callable[[], None]] = None, stats_handler: StatsHandler = NOOP_STATS_HANDLER, ): """Each epoch/pass, for each partition pair, loads in embeddings and edgelist from disk, runs HOGWILD training on them, and writes partitions back to disk. """ tag_logs_with_process_name(f"Trainer-{rank}") self.config = config if config.verbose > 0: import pprint pprint.PrettyPrinter().pprint(config.to_dict()) logger.info("Loading entity counts...") entity_storage = ENTITY_STORAGES.make_instance(config.entity_path) entity_counts: Dict[str, List[int]] = {} for entity, econf in config.entities.items(): entity_counts[entity] = [] for part in range(econf.num_partitions): entity_counts[entity].append(entity_storage.load_count(entity, part)) # Figure out how many lhs and rhs partitions we need holder = self.holder = EmbeddingHolder(config) logger.debug( f"nparts {holder.nparts_lhs} {holder.nparts_rhs} " f"types {holder.lhs_partitioned_types} {holder.rhs_partitioned_types}" ) # We know ahead of time that we wil need 1-2 storages for each embedding type, # as well as the max size of this storage (num_entities x D). # We allocate these storages n advance in `embedding_storage_freelist`. # When we need storage for an entity type, we pop it from this free list, # and then add it back when we 'delete' the embedding table. embedding_storage_freelist: Dict[ EntityName, Set[torch.FloatStorage] ] = defaultdict(set) for entity_type, counts in entity_counts.items(): max_count = max(counts) num_sides = ( (1 if entity_type in holder.lhs_partitioned_types else 0) + (1 if entity_type in holder.rhs_partitioned_types else 0) + ( 1 if entity_type in (holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types) else 0 ) ) for _ in range(num_sides): embedding_storage_freelist[entity_type].add( allocate_shared_tensor( (max_count, config.entity_dimension(entity_type)), dtype=torch.float, ).storage() ) # create the handlers, threads, etc. for distributed training if config.num_machines > 1 or config.num_partition_servers > 0: if not 0 <= rank < config.num_machines: raise RuntimeError("Invalid rank for trainer") if not td.is_available(): raise RuntimeError( "The installed PyTorch version doesn't provide " "distributed training capabilities." ) ranks = ProcessRanks.from_num_invocations( config.num_machines, config.num_partition_servers ) num_ps_groups = config.num_groups_for_partition_server groups: List[List[int]] = [ranks.trainers] # barrier group groups += [ ranks.trainers + ranks.partition_servers ] * num_ps_groups # ps groups group_idxs_for_partition_servers = range(1, len(groups)) if rank == SINGLE_TRAINER: logger.info("Setup lock server...") start_server( LockServer( num_clients=len(ranks.trainers), nparts_lhs=holder.nparts_lhs, nparts_rhs=holder.nparts_rhs, entities_lhs=holder.lhs_partitioned_types, entities_rhs=holder.rhs_partitioned_types, entity_counts=entity_counts, init_tree=config.distributed_tree_init_order, stats_handler=stats_handler, ), process_name="LockServer", init_method=config.distributed_init_method, world_size=ranks.world_size, server_rank=ranks.lock_server, groups=groups, subprocess_init=subprocess_init, ) self.bucket_scheduler = DistributedBucketScheduler( server_rank=ranks.lock_server, client_rank=ranks.trainers[rank] ) logger.info("Setup param server...") start_server( ParameterServer(num_clients=len(ranks.trainers)), process_name=f"ParamS-{rank}", init_method=config.distributed_init_method, world_size=ranks.world_size, server_rank=ranks.parameter_servers[rank], groups=groups, subprocess_init=subprocess_init, ) parameter_sharer = ParameterSharer( process_name=f"ParamC-{rank}", client_rank=ranks.parameter_clients[rank], all_server_ranks=ranks.parameter_servers, init_method=config.distributed_init_method, world_size=ranks.world_size, groups=groups, subprocess_init=subprocess_init, ) if config.num_partition_servers == -1: start_server( ParameterServer( num_clients=len(ranks.trainers), group_idxs=group_idxs_for_partition_servers, log_stats=True, ), process_name=f"PartS-{rank}", init_method=config.distributed_init_method, world_size=ranks.world_size, server_rank=ranks.partition_servers[rank], groups=groups, subprocess_init=subprocess_init, ) groups = init_process_group( rank=ranks.trainers[rank], world_size=ranks.world_size, init_method=config.distributed_init_method, groups=groups, ) trainer_group, *groups_for_partition_servers = groups self.barrier_group = trainer_group if len(ranks.partition_servers) > 0: partition_client = PartitionClient( ranks.partition_servers, groups=groups_for_partition_servers, log_stats=True, ) else: partition_client = None else: self.barrier_group = None self.bucket_scheduler = SingleMachineBucketScheduler( holder.nparts_lhs, holder.nparts_rhs, config.bucket_order, stats_handler ) parameter_sharer = None partition_client = None hide_distributed_logging() # fork early for HOGWILD threads logger.info("Creating workers...") self.num_workers = get_num_workers(config.workers) self.pool = create_pool( self.num_workers, subprocess_name=f"TWorker-{rank}", subprocess_init=subprocess_init, ) checkpoint_manager = CheckpointManager( config.checkpoint_path, rank=rank, num_machines=config.num_machines, partition_client=partition_client, subprocess_name=f"BackgRW-{rank}", subprocess_init=subprocess_init, ) self.checkpoint_manager = checkpoint_manager checkpoint_manager.register_metadata_provider(ConfigMetadataProvider(config)) if rank == 0: checkpoint_manager.write_config(config) num_edge_chunks = get_num_edge_chunks(config) self.iteration_manager = IterationManager( config.num_epochs, config.edge_paths, num_edge_chunks, iteration_idx=checkpoint_manager.checkpoint_version, ) checkpoint_manager.register_metadata_provider(self.iteration_manager) logger.info("Initializing global model...") if model is None: model = make_model(config) model.share_memory() loss_fn = LOSS_FUNCTIONS.get_class(config.loss_fn)(margin=config.margin) relation_weights = [relation.weight for relation in config.relations] if trainer is None: trainer = Trainer( model_optimizer=make_optimizer(config, model.parameters(), False), loss_fn=loss_fn, relation_weights=relation_weights, ) if evaluator is None: eval_overrides = {} if config.eval_num_batch_negs is not None: eval_overrides["num_batch_negs"] = config.eval_num_batch_negs if config.eval_num_uniform_negs is not None: eval_overrides["num_uniform_negs"] = config.eval_num_uniform_negs evaluator = RankingEvaluator( loss_fn=loss_fn, relation_weights=relation_weights, overrides=eval_overrides, ) if config.init_path is not None: self.loadpath_manager = CheckpointManager(config.init_path) else: self.loadpath_manager = None # load model from checkpoint or loadpath, if available state_dict, optim_state = checkpoint_manager.maybe_read_model() if state_dict is None and self.loadpath_manager is not None: state_dict, optim_state = self.loadpath_manager.maybe_read_model() if state_dict is not None: model.load_state_dict(state_dict, strict=False) if optim_state is not None: trainer.model_optimizer.load_state_dict(optim_state) logger.debug("Loading unpartitioned entities...") for entity in holder.lhs_unpartitioned_types | holder.rhs_unpartitioned_types: count = entity_counts[entity][0] s = embedding_storage_freelist[entity].pop() dimension = config.entity_dimension(entity) embs = torch.FloatTensor(s).view(-1, dimension)[:count] embs, optimizer = self._load_embeddings(entity, UNPARTITIONED, out=embs) holder.unpartitioned_embeddings[entity] = embs trainer.unpartitioned_optimizers[entity] = optimizer # start communicating shared parameters with the parameter server if parameter_sharer is not None: shared_parameters: Set[int] = set() for name, param in model.named_parameters(): if id(param) in shared_parameters: continue shared_parameters.add(id(param)) key = f"model.{name}" logger.info( f"Adding {key} ({param.numel()} params) to parameter server" ) parameter_sharer.set_param(key, param.data) for entity, embs in holder.unpartitioned_embeddings.items(): key = f"entity.{entity}" logger.info(f"Adding {key} ({embs.numel()} params) to parameter server") parameter_sharer.set_param(key, embs.data) # store everything in self self.model = model self.trainer = trainer self.evaluator = evaluator self.rank = rank self.entity_counts = entity_counts self.embedding_storage_freelist = embedding_storage_freelist self.stats_handler = stats_handler self.strict = False