weight_decay = 5e-4 epochs = 50 # Utils batch_size = 256 records = [] torch.manual_seed(0) # Load data train_loader, test_loader = load_data(batch_size) print('Finish loading data...\n') # FusionRegressor model = FusionRegressor(estimator=MLP, n_estimators=n_estimators, output_dim=output_dim, lr=lr, weight_decay=weight_decay, epochs=epochs) tic = time.time() model.fit(train_loader) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic records.append( ('FusionRegressor', training_time, evaluating_time, testing_mse))
epochs = 50 # Utils batch_size = 512 records = [] torch.manual_seed(0) # Load data train_loader, test_loader = load_data(batch_size) print("Finish loading data...\n") logger = set_logger("regression_YearPredictionMSD_mlp") # FusionRegressor model = FusionRegressor(estimator=MLP, n_estimators=n_estimators, cuda=True) # Set the optimizer model.set_optimizer("Adam", lr=lr, weight_decay=weight_decay) tic = time.time() model.fit(train_loader, epochs=epochs) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic