model.fit(train_loader) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic records.append( ('BaggingRegressor', training_time, evaluating_time, testing_mse)) # GradientBoostingRegressor model = GradientBoostingRegressor(estimator=MLP, n_estimators=n_estimators, output_dim=output_dim, lr=lr, weight_decay=weight_decay, epochs=epochs) tic = time.time() model.fit(train_loader) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic records.append(('GradientBoostingRegressor', training_time, evaluating_time, testing_mse))
tic = time.time() model.fit(train_loader, epochs=epochs) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic records.append( ("BaggingRegressor", training_time, evaluating_time, testing_mse)) # GradientBoostingRegressor model = GradientBoostingRegressor(estimator=MLP, n_estimators=n_estimators, cuda=True) # Set the optimizer model.set_optimizer("Adam", lr=lr, weight_decay=weight_decay) tic = time.time() model.fit(train_loader, epochs=epochs) toc = time.time() training_time = toc - tic tic = time.time() testing_mse = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic