예제 #1
0
def parse_native_functions_keys(
    backend_yaml_path: str,
    grouped_native_functions: Sequence[Union[NativeFunction,
                                             NativeFunctionsGroup]],
) -> Tuple[List[OperatorName], List[Any], List[OperatorName]]:

    native_functions_map: Dict[OperatorName, NativeFunction] = {
        f.func.name: f
        for f in concatMap(
            lambda f: [f]
            if isinstance(f, NativeFunction) else list(f.functions()),
            grouped_native_functions,
        )
    }

    with open(backend_yaml_path, "r") as f:
        yaml_values = yaml.load(f, Loader=YamlLoader)
    assert isinstance(yaml_values, dict)

    full_codegen = yaml_values.pop("full_codegen", [])
    non_native = yaml_values.pop("non_native", [])
    ir_gen = yaml_values.pop("ir_gen", [])
    assert isinstance(full_codegen, list)
    assert isinstance(non_native, list)
    assert isinstance(ir_gen, list)
    full_codegen_opnames = [OperatorName.parse(name) for name in full_codegen]
    ir_gen_opnames = [OperatorName.parse(name) for name in ir_gen]
    return full_codegen_opnames, non_native, ir_gen_opnames
예제 #2
0
 def create_backend_index(
     backend_ops: List[str],
     dispatch_key: DispatchKey,
     *,
     use_out_as_primary: bool,
     use_device_guard: bool,
 ) -> BackendIndex:
     metadata: Dict[OperatorName, BackendMetadata] = {}
     for op in backend_ops:
         op_name = OperatorName.parse(op)
         assert (op_name in native_functions_map
                 ), f"Found an invalid operator name: {op_name}"
         # See Note [External Backends Follow Dispatcher API]
         kernel_name = dispatcher.name(native_functions_map[op_name].func)
         # TODO: allow structured external backends later.
         m = BackendMetadata(kernel=kernel_name,
                             structured=False,
                             cpp_namespace=cpp_namespace)
         metadata[op_name] = m
     return BackendIndex(
         dispatch_key=dispatch_key,
         use_out_as_primary=use_out_as_primary,
         external=True,
         symint=True,  # TODO: make this configurable
         device_guard=use_device_guard,
         index=metadata,
     )
예제 #3
0
def parse_full_codegen_ops(
    backend_yaml_path: str,
    grouped_native_functions: Sequence[Union[NativeFunction,
                                             NativeFunctionsGroup]],
) -> List[OperatorName]:

    native_functions_map: Dict[OperatorName, NativeFunction] = {
        f.func.name: f
        for f in concatMap(
            lambda f: [f]
            if isinstance(f, NativeFunction) else list(f.functions()),
            grouped_native_functions,
        )
    }

    with open(backend_yaml_path, "r") as f:
        yaml_values = yaml.load(f, Loader=YamlLoader)
    assert isinstance(yaml_values, dict)

    full_codegen = yaml_values.pop("full_codegen", [])
    assert isinstance(
        full_codegen,
        list), f'expected "full_codegen" to be a list, but got: {full_codegen}'
    full_codegen = [OperatorName.parse(name) for name in full_codegen]

    return full_codegen
예제 #4
0
def print_op_str_if_not_supported(op_str):
    op = OperatorName.parse(op_str)
    packet = getattr(torch.ops.aten, str(op.name))
    overload = getattr(packet, op.overload_name if op.overload_name else "default")
    if any(overload in d for d in [meta_dispatch_skips, meta_dispatch_device_skips['cuda']]):
        print(f"{overload}  # SKIP")
    if any(overload in d for d in [meta_dispatch_expected_failures, meta_dispatch_device_expected_failures['cuda']]):
        print(overload)
def generate_function(
    f: NativeFunction, k: SchemaKind
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]:
    from torchgen.api import cpp

    if k == SchemaKind.functional:
        assert f.func.kind() != SchemaKind.functional
        # The new "functional" NativeFunction has:
        # - any mutable arguments have been converted into (immutable) returns.
        #   (if a mutable argument was not also a return, it gets converted to one)
        # - "_functional" appended to the base name, ONLY IF this op has a mutable variant.
        #   See Note [Overload Ambiguity With Functional Variants]
        # The default grouping logic in signature() actually already does this,
        # so we can piggy-back off it (but we still want return names)
        func = f.func.signature(keep_return_names=True).with_name(
            OperatorName(
                name=BaseOperatorName(
                    base=f.func.name.name.base,
                    inplace=False,
                    dunder_method=f.func.name.name.dunder_method,
                    # See Note [Overload Ambiguity With Functional Variants]
                    functional_overload=f.func.kind() == SchemaKind.mutable,
                ),
                overload_name=f.func.name.overload_name,
            )
        )
    elif k == SchemaKind.out:
        # We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
        # but at least today, there is no good reason to actually use them.
        # we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
        if f.func.kind() == SchemaKind.inplace:
            func = self_to_out_signature(f.func)
        elif f.func.kind() == SchemaKind.mutable:
            func = mutable_to_out_signature(f.func)
        elif f.func.kind() == SchemaKind.functional:
            func = functional_to_out_signature(f.func)
        else:
            raise AssertionError(
                "We only bother generating out= functions from either inplace or mutable or functional variants"
            )
    else:
        raise AssertionError(
            "We currently only generate either functional or out= NativeFunctions"
        )

    # Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to
    # disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and
    # `randn.generator_with_names_out`.
    kernel_name = (
        func.name.unambiguous_name()
        if func.kind() == SchemaKind.out
        else cpp.name(func)
    )
    backend_metadata = {
        DispatchKey.CompositeExplicitAutograd: {
            func.name: BackendMetadata(
                kernel=kernel_name,
                structured=False,
                cpp_namespace=DEFAULT_KERNEL_NAMESPACE,
            )
        }
    }

    return (
        NativeFunction(
            func=func,
            use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
            # These generated fn's aren't meant to be user friendly- don't generate methods.
            variants=set([Variant.function]),
            structured=False,
            structured_delegate=None,
            structured_inherits=None,
            precomputed=None,
            autogen=[],
            ufunc_inner_loop={},
            manual_kernel_registration=False,
            manual_cpp_binding=False,
            python_module=None,
            category_override=None,
            device_guard=False,
            device_check=DeviceCheckType.NoCheck,
            loc=f.loc,
            cpp_no_default_args=set(),
            is_abstract=f.is_abstract,
            has_composite_implicit_autograd_kernel=False,
            has_composite_explicit_autograd_kernel=True,
            has_composite_explicit_autograd_non_functional_kernel=False,
            # Every generated NativeFunction gets a "generated" tag, so it's easy to tell
            # which NativeFunction objects did not come directly from native_functions.yaml.
            tags=set(["generated"]) | (f.tags & {"nondeterministic_seeded"}),
            namespace=f.namespace,
        ),
        backend_metadata,
    )