def test_encode_decode(self): corpus = ( 'This is a corpus of text that provides a bunch of tokens from which ' 'to build a vocabulary. It will be used when strings are encoded ' 'with a SubwordTextTokenizer subclass. The encoder was coded by a coder.' ) alphabet = set(corpus) ^ {' '} original = 'This is a coded sentence encoded by the SubwordTextTokenizer.' encoder = SubwordTextTokenizer.build_to_target_size_from_corpus( [corpus, original], target_size=100, min_val=2, max_val=10) # Encoding should be reversible. encoded = encoder.encode(original) decoded = encoder.decode(encoded) self.assertEqual(original, decoded) # The substrings coded and coder are frequent enough in the corpus that # they should appear in the vocabulary even though they are substrings # of other included strings. subtoken_strings = encoded self.assertIn('encoded_', subtoken_strings) self.assertIn('coded_', subtoken_strings) self.assertIn('SubwordTextTokenizer_', encoder._all_subtoken_strings) self.assertIn('coder_', encoder._all_subtoken_strings) # Every character in the corpus should be in the encoder's alphabet and # its subtoken vocabulary. self.assertTrue(alphabet.issubset(encoder._alphabet)) for a in alphabet: self.assertIn(a, encoder._all_subtoken_strings)
def test_unicode(self): corpus = 'Cat emoticons. \U0001F638 \U0001F639 \U0001F63A \U0001F63B' token_counts = collections.Counter(corpus.split(' ')) encoder = SubwordTextTokenizer.build_to_target_size_from_token_counts( 100, token_counts, 2, 10) self.assertIn('\U0001F638', encoder._alphabet) self.assertIn('\U0001F63B', encoder._all_subtoken_strings)
def __init__(self, sample, append_sos=False, append_eos=False, target_vocab_size=None, min_occurrences=1, max_occurrences=1e3, reserved_tokens=DEFAULT_RESERVED_TOKENS, sos_index=DEFAULT_SOS_INDEX, eos_index=DEFAULT_EOS_INDEX, unknown_index=DEFAULT_UNKNOWN_INDEX, padding_index=DEFAULT_PADDING_INDEX, **kwargs): super().__init__(**kwargs) self.append_sos = append_sos self.append_eos = append_eos self.sos_index = sos_index self.eos_index = eos_index self.unknown_index = unknown_index self.reserved_tokens = reserved_tokens self.padding_index = padding_index if target_vocab_size is None: self.tokenizer = SubwordTextTokenizer() self.tokenizer.build_from_corpus(sample, min_count=min_occurrences) else: target_vocab_size -= len(reserved_tokens) self.tokenizer = SubwordTextTokenizer.build_to_target_size_from_corpus( sample, target_size=target_vocab_size, min_val=min_occurrences, max_val=max_occurrences) self.index_to_token = reserved_tokens.copy() self.token_to_index = {token: index for index, token in enumerate(reserved_tokens)} for token in self.tokenizer.vocab: self.index_to_token.append(token) self.token_to_index[token] = len(self.index_to_token) - 1
def test_raises_exception_when_not_encodable(self): corpus = 'the quick brown fox jumps over the lazy dog' token_counts = collections.Counter(corpus.split(' ')) # Deliberately exclude some required encoding chars from the alphabet # and token list, making some strings unencodable. encoder = SubwordTextTokenizer.build_to_target_size_from_token_counts( 100, token_counts, 2, 10) original = 'This has UPPER CASE letters that are out of alphabet' # Previously there was a bug which produced an infinite loop in this case. with self.assertRaises(AssertionError): encoder.encode(original)
def test_small_vocab(self): corpus = 'The quick brown fox jumps over the lazy dog' token_counts = collections.Counter(corpus.split(' ')) alphabet = set(corpus) ^ {' '} encoder = SubwordTextTokenizer.build_to_target_size_from_token_counts( 10, token_counts, 2, 10) # All vocabulary elements are in the alphabet and subtoken strings even # if we requested a smaller vocabulary to assure all expected strings # are encodable. self.assertTrue(alphabet.issubset(encoder._alphabet)) for a in alphabet: self.assertIn(a, encoder._all_subtoken_strings)
def test_encodable_when_not_in_alphabet(self): corpus = 'the quick brown fox jumps over the lazy dog' token_counts = collections.Counter(corpus.split(' ')) encoder = SubwordTextTokenizer.build_to_target_size_from_token_counts( 100, token_counts, 2, 10) original = 'This has UPPER CASE letters that are out of alphabet' # Early versions could have an infinite loop when breaking into subtokens # if there was any out-of-alphabet characters in the encoded string. encoded = encoder.encode(original) decoded = encoder.decode(encoded) self.assertEqual(original, decoded) encoded_str = ''.join(encoded) self.assertIn('\\84;', encoded_str)
def test_token_counts(self): token_counts = SubwordTextTokenizer._count_tokens(self.corpus) expected = { u"'": 2, u".": 2, u". ": 1, u"... ": 1, u"Groucho": 1, u"Marx": 1, u"Mitch": 1, u"Hedberg": 1, u"I": 3, u"in": 2, u"my": 2, u"pajamas": 2, } self.assertDictContainsSubset(expected, token_counts)
class SubwordEncoder(TextEncoder): """ Invertibly encoding text using a limited vocabulary. Applies Googles Tensor2Tensor ``SubwordTextTokenizer`` that invertibly encodes a native string as a sequence of subtokens from a limited vocabulary. In order to build the vocabulary, it uses recursive binary search to find a minimum token count `x` (s.t. `min_occurrences` <= `x` <= `max_occurrences`) that most closely matches the `target_size`. **Tokenizer Reference:** https://github.com/tensorflow/tensor2tensor/blob/8bdecbe434d93cb1e79c0489df20fee2d5a37dc2/tensor2tensor/data_generators/text_encoder.py#L389 Args: sample (list): Sample of data used to build encoding dictionary. append_eos (bool, optional): If ``True`` append EOS token onto the end to the encoded vector. target_vocab_size (int, optional): Desired size of vocab. min_occurrences (int, optional): Lower bound for the minimum token count. max_occurrences (int, optional): Upper bound for the minimum token count. reserved_tokens (list of str, optional): List of reserved tokens inserted in the beginning of the dictionary. eos_index (int, optional): The eos token is used to encode the end of a sequence. This is the index that token resides at. unknown_index (int, optional): The unknown token is used to encode unseen tokens. This is the index that token resides at. padding_index (int, optional): The padding token is used to encode sequence padding. This is the index that token resides at. **kwargs: Keyword arguments passed onto ``TextEncoder.__init__``. """ def __init__(self, sample, append_eos=False, target_vocab_size=None, min_occurrences=1, max_occurrences=1e3, reserved_tokens=DEFAULT_RESERVED_TOKENS, eos_index=DEFAULT_EOS_INDEX, unknown_index=DEFAULT_UNKNOWN_INDEX, padding_index=DEFAULT_PADDING_INDEX, **kwargs): super().__init__(**kwargs) self.append_eos = append_eos self.eos_index = eos_index self.unknown_index = unknown_index self.reserved_tokens = reserved_tokens self.padding_index = padding_index if target_vocab_size is None: self.tokenizer = SubwordTextTokenizer() self.tokenizer.build_from_corpus(sample, min_count=min_occurrences) else: target_vocab_size -= len(reserved_tokens) self.tokenizer = SubwordTextTokenizer.build_to_target_size_from_corpus( sample, target_size=target_vocab_size, min_val=min_occurrences, max_val=max_occurrences) self.itos = reserved_tokens.copy() self.stoi = { token: index for index, token in enumerate(reserved_tokens) } for token in self.tokenizer.vocab: self.itos.append(token) self.stoi[token] = len(self.itos) - 1 @property def vocab(self): """ Returns: list: List of tokens in the dictionary. """ return self.itos @property def vocab_size(self): """ Returns: int: Number of tokens in the dictionary. """ return len(self.vocab) def encode(self, sequence): """ Encodes a ``sequence``. Args: sequence (str): String ``sequence`` to encode. Returns: torch.Tensor: Encoding of the ``sequence``. """ sequence = super().encode(sequence) sequence = self.tokenizer.encode(sequence) vector = [ self.stoi.get(token, self.unknown_index) for token in sequence ] if self.append_eos: vector.append(self.eos_index) return torch.tensor(vector) def decode(self, encoded): """ Decodes a tensor into a sequence. Args: encoded (torch.Tensor): Encoded sequence. Returns: str: Sequence decoded from ``encoded``. """ encoded = super().decode(encoded) return self.tokenizer.decode([self.itos[index] for index in encoded])
def test_is_pickleable(): tokenizer = SubwordTextTokenizer() pickle.dumps(tokenizer)