def __init__(self):
        super().__init__(model_name="RetinaNetEnsemble")

        self.m = retinanet_resnet50_fpn(False, trainable_backbone_layers=5, num_classes=len(Classifications) - 1)

        # TRANSFER BACKBONE
        self.a = RetinaNet()
        self.a.load(name=f'retinaFpnBackbone_realTestone@15000')
        self.m.backbone = self.a.m.backbone
예제 #2
0
    def __init__(self):
        super().__init__(model_name="RetinaNet")

        self.m = retinanet_resnet50_fpn(True, trainable_backbone_layers=5)

        # Not my favorite code-- but it will get the job done and is nicer than the duck patch.  It also allows
        # native transfer learning from the torchvision package.
        self.m.head = WholeImageRetinaHead(self.m.backbone, self.m.head)

        self.criterion = NLLLossOHE()
    def __init__(self):
        super().__init__(model_name="RetinaNetFPN")

        self.m = retinanet_resnet50_fpn(True)

        # TRANSFER BACKBONE
        self.a = RetinaNet()
        self.a.load(name=f'*****@*****.**')
        self.m.backbone = self.a.m.backbone
        # TRANSFER

        # Not my favorite code-- but it will get the job done and is nicer than the duck patch.  It also allows
        # native transfer learning from the torchvision package.
        self.m.head = TwoClassRetinaHead(self.m.backbone, self.m.head)
    def __init__(
            self,
            load_model=None,
            backbone_timm_model='resnetv2_50x1_bitm',
            backbone_channel_size=32,
            trainable_backbone_layers=3,
            raise_errors=False,
            convs_for_head: int = 3,
            pretrain_retina_net=False,
            half=True,
         ):
        super().__init__("TimmRetinaNet")

        self.m = retinanet_resnet50_fpn(pretrain_retina_net, trainable_backbone_layers=trainable_backbone_layers)

        self.devices = config.devices
        #TODO - make this work for N gpus and maybe put this in base model... for now its just an experiment
        if len(self.devices) == 1:
            self.devices = [self.devices[0], self.devices[0]]

        if load_model:
            model = TimmClassifier()
            model.load(load_model)
            model = model.model
            self.m.backbone = model
            self.m.backbone.out_channels = backbone_channel_size

        else:
            model = timm.create_model(backbone_timm_model, pretrained=True, features_only=True)

            self.m.backbone = model
            self.m.backbone.out_channels = backbone_channel_size

        self.m.head = MultiClassRetinaHead(self.m.backbone, self.m.head, [x['num_chs'] for x in model.feature_info.info], convs_for_head=convs_for_head)

        self.raise_errors = raise_errors

        layer_names = list(model.return_layers.keys())
        for i in range(max(0, len(model.return_layers) - trainable_backbone_layers)):
            layer_name = layer_names[i]
            layer = self.m.backbone.__getattr__(layer_name)
            for param in layer.parameters():
                param.requires_grad = False

        torch.cuda.empty_cache()

        self.__half = half
예제 #5
0
    def create_model(self, backbone_name, num_classes=1, **kwargs):
        model = retinanet_resnet50_fpn(pretrained=False,
                                       num_classes=num_classes + 1,
                                       pretrained_backbone=True)

        # Hacked to avoid model builtin call to GeneralizedRCNNTransform.normalize() as done in augmentation
        def noop_normalize(image):
            return image

        # Hacked to avoid model builtin call to GeneralizedRCNNTransform.resize() as done in augmentation
        def noop_resize(image, target):
            return image, target

        # HACK!! IceVision does this too!
        model.transform.normalize = noop_normalize
        model.transform.resize = noop_resize

        return model
예제 #6
0
    def __init__(self, dictionary=None):
        super(RetinaNet, self).__init__()

        self.dictionary = dictionary
        self.input_size = [512, 512]
        self.dummy_input = torch.zeros(1, 3, self.input_size[0],
                                       self.input_size[1])

        self.num_classes = len(self.dictionary)
        self.category = [v for d in self.dictionary for v in d.keys()]
        self.weight = [
            d[v] for d in self.dictionary for v in d.keys()
            if v in self.category
        ]

        self.model = retinanet_resnet50_fpn(pretrained=False,
                                            progress=False,
                                            num_classes=self.num_classes,
                                            pretrained_backbone=True,
                                            trainable_backbone_layers=None)