def __init__(self, num_input_layers, num_outputs, loss_func, reduce_error_func_dict, hist_error_func_dict, text_error_func_dict, output_scaling, resnet_type: str, learning_rate, cosine_annealing_steps, weight_decay, dtype=torch.float32, track_ideal_metrics=False): super().__init__(num_input_layers, num_outputs, loss_func, reduce_error_func_dict, hist_error_func_dict, text_error_func_dict, output_scaling, resnet_type, learning_rate, cosine_annealing_steps, weight_decay, dtype=torch.float32, track_ideal_metrics=False) self.model = self.resnet_dict[resnet_type](pretrained=False, num_classes=num_outputs) # altering resnet to fit more than 3 input layers if resnet_type.startswith('res'): self.model.conv1 = nn.Conv2d(num_input_layers, 64, kernel_size=7, stride=2, padding=3, bias=False) if resnet_type.startswith('mobile'): self.model.features[0] = ConvBNReLU(self.num_input_layers, _make_divisible(32.0, 8), stride=2, norm_layer=nn.BatchNorm2d) self.plotter_val_data = None self.plotter_train_data = None self.type(dst_type=dtype)
def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if not inverted_residual_setting or len( inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format( inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible( last_channel * max(1.0, width_mult), round_nearest) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for expand_ratio, num_channels, num_layers, block_stride in inverted_residual_setting: output_channel = _make_divisible(num_channels * width_mult, round_nearest) for i in range(num_layers): stride = block_stride if i == 0 else 1 features.append( block(input_channel, output_channel, stride, expand_ratio=expand_ratio)) input_channel = output_channel # building last several layers features.append( ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, 0, 0.01) nn.init.zeros_(module.bias)
def __init__(self, input_channels: int, squeeze_factor: int = 4): super().__init__() squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8) self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1) self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)
def adjust_channels(channels: int, width_mult: float): return _make_divisible(channels * width_mult, 8)
def __init__(self, num_classes=1000, width_mult=1.0, version="v1", round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNet, self).__init__() input_channel = 32 if version == "v2": settings = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] last_channel = 1280 layer = mobilenet.InvertedResidual elif version == "v1": settings = [ # t, c, n, s [1, 64, 1, 1], [1, 128, 2, 2], [1, 256, 2, 2], [1, 512, 6, 2], [1, 1024, 2, 2], ] last_channel = 1024 layer = SepConvBNReLU self.settings = settings self.version = version # building first layer input_channel = mobilenet._make_divisible(input_channel * width_mult, round_nearest) self.last_channel = mobilenet._make_divisible( last_channel * max(1.0, width_mult), round_nearest) self.conv1 = mobilenet.ConvBNReLU(3, input_channel, stride=2) # building inverted residual blocks for j, (t, c, n, s) in enumerate(settings): output_channel = mobilenet._make_divisible(c * width_mult, round_nearest) layers = [] for i in range(n): stride = s if i == 0 else 1 layers.append( layer(input_channel, output_channel, stride=stride, expand_ratio=t)) input_channel = output_channel self.add_module("layer{}".format(j + 1), nn.Sequential(*layers)) # building last several layers if self.version == "v2": self.head_conv = mobilenet.ConvBNReLU(input_channel, self.last_channel, kernel_size=1) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias)