def __init__(self, out_channels, stage_idxs, model_name, depth=5, **kwargs): inverted_residual_setting, last_channel = _mobilenet_v3_conf(model_name, kwargs) super().__init__(inverted_residual_setting, last_channel, **kwargs) self._depth = depth self._stage_idxs = stage_idxs self._out_channels = out_channels self._in_channels = 3 del self.classifier
def __init__(self, in_channels, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False): super().__init__(in_channels=in_channels, inverted_residual_setting=_mobilenet_v3_conf( 'mobilenet_v3_large', width_mult=width_mult, reduced_tail=reduced_tail, dilated=dilated)[0])
def mobilenet_v3_small(pretrained=False, progress=True, quantize=False, **kwargs): """ Constructs a MobileNetV3 Small architecture from `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. Note that quantize = True returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported Args: pretrained (bool): If True, returns a model pre-trained on ImageNet. progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, returns a quantized model, else returns a float model """ arch = "mobilenet_v3_small" inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, kwargs) return _mobilenet_v3_model(arch, inverted_residual_setting, last_channel, pretrained, progress, quantize, **kwargs)