예제 #1
0
def load_image(data_mean, data_std, device, image_name):
    """
    Helper method to load an image into a torch tensor. Includes preprocessing.
    """
    im = Image.open(image_name)
    x = Normalize(mean=data_mean,
                  std=data_std)(ToTensor()(CenterCrop(224)(Resize(256)(im))))
    x = x.unsqueeze(0).to(device)
    return x
예제 #2
0
    def __call__(self, vis):

        global state

        # Do nothing
        if self.key == 0:
            pass
        # Dump current output window
        elif self.key == ord('X'):
            args.dump_dir.mkdir(exist_ok=True)
            pascal_az = (int(state['angle_z']) + 90) % 360
            pascal_el = 90 - int(state['angle_y'])
            rad = int(state['radius'])
            d_id = state['dump_id']
            id_str = f'{d_id:03d}_el_{pascal_el:03d}_az_{pascal_az:03d}_rad_{rad:03d}'
            dump_image_path = str(args.dump_dir / f'{id_str}.png')
            cv2.imwrite(dump_image_path, state['dump_image'])
            print(f'Saved {dump_image_path}.')
            state['dump_id'] += 1
        # Override open3D reset
        elif self.key == ord('R'):
            pass
        # Rotation around Y axis
        elif self.key == ord('F'):
            state['angle_y'] += 5
        elif self.key == ord('D'):
            state['angle_y'] -= 5
        # Rotation around Z axis
        elif self.key == ord('S'):
            state['angle_z'] += 5
        elif self.key == ord('A'):
            state['angle_z'] -= 5
        # Distance from origin (+)
        elif self.key == ord('H'):
            state['radius'] += 0.05
        # Distance from origin (-)
        elif self.key == ord('G'):
            state['radius'] -= 0.05
        # Next dataset example
        elif self.key == ord(' '):
            state['texture_src'] = state['dataset'][state['dataset_index']]
            state['dataset_index'] += 1
        # Next CAD model
        elif self.key == ord('N'):
            state['cad_idx'] += 1
            if state['cad_idx'] == 10:
                state['cad_idx'] = 0

            # Update model and 3D keypoints
            cad_idx = state['cad_idx']
            model_path = args.CAD_root / f'pascal_{state["pascal_class"]}_cad_{cad_idx:03d}.ply'

            # Load 3D keypoints for current model
            yaml_file = model_path.parent / (model_path.stem + '.yaml')
            state['kpoints_3d'] = load_yaml_file(yaml_file)['kpoints_3d']

            mesh = o3d.read_triangle_mesh(str(model_path))

            # Compute normal colors
            mesh.compute_vertex_normals()
            state['normal_vertex_colors'] = (np.asarray(mesh.vertex_normals) +
                                             1) / 2.

            if 'mesh' not in state['geometries']:
                state['geometries']['mesh'] = mesh
            else:
                state['geometries']['mesh'].vertices = mesh.vertices
                state['geometries']['mesh'].vertex_colors = mesh.vertex_colors
                state['geometries'][
                    'mesh'].vertex_normals = mesh.vertex_normals
                state['geometries']['mesh'].triangles = mesh.triangles

        else:
            raise NotImplementedError()

        # Set normal colors to the mesh
        state['geometries']['mesh'].vertex_colors = o3d.Vector3dVector(
            state['normal_vertex_colors'])

        # Move Camera
        angle_y = np.clip(state['angle_y'], -90, 90)
        radius = np.clip(state['radius'], 0, state['radius'])

        pascal_az = (state['angle_z'] + 90) % 360
        pascal_el = 90 - angle_y

        intrinsic = intrinsic_matrix(state['focal'],
                                     cx=img_w / 2,
                                     cy=img_h / 2)

        if args.verbose:
            print(f'Azimuth:{pascal_az} Elevation:{angle_y} Radius:{radius}')

        extrinsic = pascal_vpoint_to_extrinsics(az_deg=pascal_az,
                                                el_deg=pascal_el,
                                                radius=radius)

        if not vis.get_render_option() or not vis.get_view_control():
            vis.update_geometry()  # we don't have anything, return
            return
        align_view(vis, focal=state['focal'], extrinsic=extrinsic)
        vis.get_render_option().mesh_color_option = o3d.MeshColorOption.Color
        vis.get_render_option().light_on = False
        vis.get_render_option().background_color = (0, 0, 0)

        # Capture normal 2.5D sketch
        src_normal = np.asarray(
            vis.capture_screen_float_buffer(do_render=True))
        src_normal = (src_normal * 255).astype(np.uint8)
        object_mask = np.all(src_normal == 0, axis=-1)

        if args.LAB:
            src_normal = cv2.cvtColor(src_normal, cv2.COLOR_RGB2LAB)
        else:
            raise ValueError('Released model was trained in LAB space.')

        # Project model kpoints in 2D
        kpoints_2d_step_dict = {}
        for k_name, k_val in state['kpoints_3d'].items():
            point_3d = np.asarray([k_val])
            kpoints_2d_step = project_points(point_3d, intrinsic, extrinsic)
            kpoints_2d_step /= (img_w, img_h)
            kpoints_2d_step = np.clip(kpoints_2d_step, -1, 1)
            kpoints_2d_step_dict[k_name] = kpoints_2d_step.squeeze(0)

        meta = {
            'kpoints_2d': kpoints_2d_step_dict,
            'vpoint': [pascal_az, pascal_el],
            'cad_idx': state['cad_idx']
        }

        dst_pl_info = get_planes(np.zeros((img_h, img_w, 3)),
                                 meta=meta,
                                 pascal_class=args.pascal_class,
                                 vis_oracle=state['vis_oracle'])
        _, dst_kpoints_planes, dst_visibilities = dst_pl_info

        texture_src = state['texture_src']
        src_planes = np.asarray(
            [to_image(i, from_LAB=args.LAB) for i in texture_src['planes']])
        src_kpoints_planes = texture_src['src_kpoints_planes']
        src_visibilities = texture_src['src_vs']

        planes_warped, planes_unwarped = warp_unwarp_planes(
            src_planes=src_planes,
            src_planes_kpoints=src_kpoints_planes,
            dst_planes_kpoints=dst_kpoints_planes,
            src_visibilities=src_visibilities,
            dst_visibilities=dst_visibilities,
            pascal_class=args.pascal_class)

        planes_warped = TextureDatasetWithNormal.planes_to_torch(
            planes_warped, to_LAB=args.LAB)
        planes_warped = planes_warped.reshape(
            1, planes_warped.shape[0] * planes_warped.shape[1],
            planes_warped.shape[2], planes_warped.shape[3])

        src_sketch_input = Normalize(mean=[0.5] * 3, std=[0.5] * 3)(ToTensor()(
            (Image.fromarray(src_normal))))
        src_central = texture_src['src_central']

        gen_in_src = torch.cat([
            src_sketch_input.unsqueeze(0),
            src_central.unsqueeze(0), planes_warped
        ],
                               dim=1).to(args.device)

        net_image = to_image(state['net'](gen_in_src)[0], from_LAB=args.LAB)

        # Use the normal image to mask artifacts
        net_image[object_mask] = 255

        out_image = np.concatenate([
            to_image(src_sketch_input, from_LAB=args.LAB),
            to_image(src_central, from_LAB=args.LAB), net_image,
            to_image(texture_src['src_image'], from_LAB=args.LAB)
        ],
                                   axis=1)
        state['dump_image'] = out_image

        cv2.imshow('Output', out_image)
        cv2.waitKey(20)
        vis.update_geometry()
예제 #3
0
파일: espnetv2.py 프로젝트: sacmehta/HATNet
    from PIL import Image

    model = EESPNet(args)
    model.eval()

    weigth_dict = torch.load(args.weights)
    model.load_state_dict(weigth_dict)

    rgb_img = Image.open('../train_140_im/MP_0001.tiff.jpg').convert('RGB')
    from torchvision.transforms import CenterCrop, ToTensor, Normalize, Resize
    from data_loader.melanoma_classification import MEAN, STD

    crop_image = Resize(size=args.im_size)(rgb_img)
    crop_image.save('../temp/rgb.jpg')
    crop_image = ToTensor()(crop_image)
    crop_image_norm = Normalize(mean=MEAN, std=STD)(crop_image)

    crop_image_norm = crop_image_norm.unsqueeze(0)

    _, outputs = model(crop_image_norm)

    import matplotlib.pyplot as plt

    for i in range(len(outputs)):
        pred = outputs[i]
        pred = F.softmax(pred, dim=1).squeeze(0)
        pred = pred.max(0)[0]
        h, w = pred.size()
        pred = pred.cpu().detach().numpy()
        plt.imshow(pred, cmap='hot', interpolation='nearest')
        plt.savefig('../temp/pred_{}_{}.png'.format(h, w))
예제 #4
0
    def __call__(self, vis):

        global state
        global kpoints_3d
        global normal_vertex_colors
        global part_vertex_colors
        global texture_src

        # Do nothing
        if self.key == 0:
            pass
        # Dump current output window
        elif self.key == ord('X'):
            args.dump_dir.mkdir(exist_ok=True)
            el = int(state['angle_y'])
            az = int(state['angle_z'])
            rad = int(state['radius'])
            d_id = state['dump_id']
            id_str = f'{d_id:03d}_el_{el:03d}_az_{az:03d}_rad_{rad:03d}'
            cv2.imwrite(str(args.dump_dir / f'{id_str}.png'),
                        state['dump_image'])
            state['dump_id'] += 1
        # Override open3D reset
        elif self.key == ord('R'):
            pass
        # Rotation around Y axis
        elif self.key == ord('F'):
            state['angle_y'] += 5
        elif self.key == ord('D'):
            state['angle_y'] -= 5
        # Rotation around Z axis
        elif self.key == ord('S'):
            state['angle_z'] += 5
        elif self.key == ord('A'):
            state['angle_z'] -= 5
        # Distance from origin (+)
        elif self.key == ord('H'):
            state['radius'] += 0.05
        # Distance from origin (-)
        elif self.key == ord('G'):
            state['radius'] -= 0.05
        # Next dataset example
        elif self.key == ord(' '):
            texture_src = state['dataset'][state['dataset_index']]
            state['dataset_index'] += 1
        # Next CAD model
        elif self.key == ord('N'):
            state['cad_idx'] += 1
            if state['cad_idx'] == 10:
                state['cad_idx'] = 0

            # --------------- Update model and Kpoints 3D ----------------------
            cad_idx = state['cad_idx']
            model_path = args.CAD_root / f'pascal_car_cad_{cad_idx:03d}.ply'
            kpoints_3d = state['car_cad_kpoints_3D'][cad_idx].astype(np.float32)
            car_mesh = read_triangle_mesh(str(model_path))

            # ------------------- Compute normal Colors ----------------------
            car_mesh.compute_vertex_normals()
            normal_vertex_colors = (np.asarray(car_mesh.vertex_normals) + 1) / 2.

            # -------------------- Compute Parts Colors ------------------------
            color_dict = pascal_parts_colors['car']
            obj_path = model_path.parent / (model_path.stem + '.obj')
            color_mesh_from_obj(car_mesh, obj_name=obj_path, mtl_to_color=color_dict,
                                base_color=color_dict['car'])
            part_vertex_colors = np.asarray(car_mesh.vertex_colors).copy()
            # Reset colors to normals
            car_mesh.vertex_colors = Vector3dVector(normal_vertex_colors)

            if 'car_mesh' not in state['geometries']:
                state['geometries']['car_mesh'] = car_mesh
            else:
                state['geometries']['car_mesh'].vertices = car_mesh.vertices
                state['geometries']['car_mesh'].vertex_colors = car_mesh.vertex_colors
                state['geometries']['car_mesh'].vertex_normals = car_mesh.vertex_normals
                state['geometries']['car_mesh'].triangles = car_mesh.triangles

        else:
            raise NotImplementedError()

        # -------------------------- Move Camera ------------------------------
        angle_y = np.clip(state['angle_y'], -90, 90)
        radius = np.clip(state['radius'], 0, state['radius'])
        pascal_az = (state['angle_z'] + 90) % 360

        intrinsic = intrinsic_matrix(state['focal'], cx=img_w/2, cy=img_h/2)

        if args.verbose:
            print(f'Azimuth:{pascal_az} Elevation:{angle_y} Radius:{radius}')

        extrinsic = pascal_vpoint_to_extrinsics(az_deg=pascal_az,
                                                el_deg=90 - angle_y,
                                                radius=radius)

        # ---------------------- Start Rendering ------------------------------
        if not vis.get_render_option() or not vis.get_view_control():
            vis.update_geometry()  # we don't have anything, return
            return
        align_view(vis, focal=state['focal'], extrinsic=extrinsic)
        vis.get_render_option().mesh_color_option = MeshColorOption.Color
        vis.get_render_option().light_on = False
        vis.get_render_option().background_color = (0, 0, 0)

        # ---------------------- Normal ---------------------------------------
        src_shaded = np.asarray(vis.capture_screen_float_buffer(do_render=True))
        src_shaded = (src_shaded * 255).astype(np.uint8)
        if args.LAB:
            src_shaded = cv2.cvtColor(src_shaded, cv2.COLOR_RGB2LAB)
        else:
            src_shaded = cv2.cvtColor(src_shaded, cv2.COLOR_RGB2BGR)

        # ---------------------- Parts ----------------------------------------
        state['geometries']['car_mesh'].vertex_colors = Vector3dVector(part_vertex_colors)
        vis.update_geometry()
        src_parts = np.asarray(vis.capture_screen_float_buffer(do_render=True))
        src_parts = (src_parts * 255).astype(np.uint8)
        if args.LAB:
            src_parts = cv2.cvtColor(src_parts, cv2.COLOR_RGB2LAB)
        else:
            src_parts = cv2.cvtColor(src_parts, cv2.COLOR_RGB2BGR)

        state['geometries']['car_mesh'].vertex_colors = Vector3dVector(normal_vertex_colors)
        vis.update_geometry()

        # Project model kpoints in 2D
        kpoints_2d_step = project_points(kpoints_3d, intrinsic, extrinsic)
        kpoints_2d_step /= (img_w, img_h)
        kpoints_2d_step = np.clip(kpoints_2d_step, -1, 1)
        kpoints_2d_step_dict = {pascal_idx_to_kpoint['car'][i]: kpoints_2d_step[i]
                                for i in range(kpoints_2d_step.shape[0])}

        meta = {'kpoints_2d': kpoints_2d_step_dict,
                'vpoint': [pascal_az]}

        _, dst_kpoints_planes, dst_visibilities = get_planes(np.zeros((img_h, img_w, 3)),
                                                             meta=meta, pascal_class='car')
        src_planes = np.asarray([to_image(i, from_LAB=args.LAB) for i in texture_src['planes']])
        src_kpoints_planes = texture_src['src_kpoints_planes']
        src_visibilities = texture_src['src_vs']

        planes_warped, planes_unwarped = warp_unwarp_planes(src_planes=src_planes,
                                                            src_planes_kpoints=src_kpoints_planes,
                                                            dst_planes_kpoints=dst_kpoints_planes,
                                                            src_visibilities=src_visibilities,
                                                            dst_visibilities=dst_visibilities,
                                                            pascal_class='car')

        planes_warped = TextureDatasetWithNormal.planes_to_torch(planes_warped, to_LAB=args.LAB)
        planes_warped = planes_warped.reshape(1, planes_warped.shape[0] * planes_warped.shape[1],
                                              planes_warped.shape[2], planes_warped.shape[3])

        src_shaded_input = Normalize(mean=[0.5]*3, std=[0.5]*3)(ToTensor()((Image.fromarray(src_shaded))))
        src_parts_input = Normalize(mean=[0.5]*3, std=[0.5]*3)(ToTensor()((Image.fromarray(src_parts))))
        src_central = texture_src['src_central']

        gen_in_src = torch.cat([src_shaded_input.unsqueeze(0), src_parts_input.unsqueeze(0),
                                src_central.unsqueeze(0), planes_warped], dim=1)
        net_image = to_image(state['net'](gen_in_src.to(args.device))[0], from_LAB=args.LAB)
        out_image = np.concatenate([to_image(texture_src['src_image'],
                                                        from_LAB=args.LAB),
                                    to_image(src_shaded_input, from_LAB=args.LAB),
                                    to_image(src_parts_input, from_LAB=args.LAB),
                                    to_image(src_central, from_LAB=args.LAB),
                                    net_image], axis=1)
        state['dump_image'] = out_image

        cv2.imshow('Output', out_image)
        cv2.waitKey(20)
        vis.update_geometry()