예제 #1
0
def galex_tractor_image(tile, band, galex_dir, radecbox, bandname):
    from tractor import (NanoMaggies, Image, LinearPhotoCal,
                         ConstantFitsWcs, ConstantSky)

    assert(band in ['n','f'])

    #nicegbands = ['NUV', 'FUV']
    #zps = dict(n=20.08, f=18.82)
    #zp = zps[band]
    
    imfn = os.path.join(galex_dir, tile.tilename.strip(),
                        '%s-%sd-intbgsub.fits.gz' % (tile.visitname.strip(), band))
    gwcs = Tan(*[float(f) for f in
                 [tile.crval1, tile.crval2, tile.crpix1, tile.crpix2,
                  tile.cdelt1, 0., 0., tile.cdelt2, 3840., 3840.]])
    (r0,r1,d0,d1) = radecbox
    H,W = gwcs.shape
    ok,xx,yy = gwcs.radec2pixelxy([r0,r0,r1,r1], [d0,d1,d1,d0])
    #print('GALEX WCS pixel positions of RA,Dec box:', xx, yy)
    if np.any(np.logical_not(ok)):
        return None
    x0 = np.clip(np.floor(xx-1).astype(int).min(), 0, W-1)
    x1 = np.clip(np.ceil (xx-1).astype(int).max(), 0, W)
    if x1-x0 <= 1:
        return None
    y0 = np.clip(np.floor(yy-1).astype(int).min(), 0, H-1)
    y1 = np.clip(np.ceil (yy-1).astype(int).max(), 0, H)
    if y1-y0 <= 1:
        return None
    debug('Reading GALEX subimage x0,y0', x0,y0, 'size', x1-x0, y1-y0)
    gwcs = gwcs.get_subimage(x0, y0, x1 - x0, y1 - y0)
    twcs = ConstantFitsWcs(gwcs)
    roislice = (slice(y0, y1), slice(x0, x1))
    
    fitsimg = fitsio.FITS(imfn)[0]
    hdr = fitsimg.read_header()
    img = fitsimg[roislice]

    inverr = np.ones_like(img)
    inverr[img == 0.] = 0.

    zp = tile.get('%s_zpmag' % band)
    
    photocal = LinearPhotoCal(NanoMaggies.zeropointToScale(zp), band=bandname)

    tsky = ConstantSky(0.)

    name = 'GALEX ' + hdr['OBJECT'] + ' ' + band

    psfimg = galex_psf(band, galex_dir)
    tpsf = PixelizedPSF(psfimg)

    tim = Image(data=img, inverr=inverr, psf=tpsf, wcs=twcs,
                sky=tsky, photocal=photocal, name=name)
    tim.roi = [x0,x1,y0,y1]
    return tim
예제 #2
0
from legacypipe.runbrick import main
#from legacyanalysis.decals_sim import main as sim_main
from astrometry.util.fits import fits_table

if __name__ == '__main__':

    travis = 'travis' in sys.argv

    # demo RexGalaxy, with plots
    if False:
        from legacypipe.survey import RexGalaxy
        from tractor import RaDecPos, NanoMaggies, PixPos
        from tractor import ScalarParam
        from tractor import Image, GaussianMixturePSF, LinearPhotoCal
        from legacypipe.survey import LogRadius
        rex = RexGalaxy(PixPos(1., 2.), NanoMaggies(r=3.), LogRadius(0.))
        print('Rex:', rex)
        print('Rex params:', rex.getParams())
        print('Rex nparams:', rex.numberOfParams())
        H, W = 100, 100
        tim = Image(data=np.zeros((H, W), np.float32),
                    inverr=np.ones((H, W), np.float32),
                    psf=GaussianMixturePSF(1., 0., 0., 4., 4., 0.),
                    photocal=LinearPhotoCal(1., band='r'))
        derivs = rex.getParamDerivatives(tim)
        print('Derivs:', len(derivs))
        print('Rex params:', rex.getParamNames())

        import pylab as plt
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence('rex')
예제 #3
0
def run_one_ccd(survey, catsurvey_north, catsurvey_south, resolve_dec, ccd,
                opt, zoomslice, ps):
    tlast = Time()

    im = survey.get_image_object(ccd)

    if opt.do_calib:
        im.run_calibs(splinesky=True)

    tim = im.get_tractor_image(slc=zoomslice,
                               pixPsf=True,
                               splinesky=True,
                               constant_invvar=opt.constant_invvar,
                               hybridPsf=opt.hybrid_psf,
                               normalizePsf=opt.normalize_psf,
                               old_calibs_ok=True)
    print('Got tim:', tim, 'x0,y0', tim.x0, tim.y0)

    tnow = Time()
    print('Read image:', tnow - tlast)
    tlast = tnow

    # Apply outlier masks
    if True:
        # Outliers masks are computed within a survey (north/south for dr8), and are stored
        # in a brick-oriented way, in the results directories.
        north_ccd = (ccd.camera.strip() != 'decam')
        catsurvey = catsurvey_north
        if not north_ccd and catsurvey_south is not None:
            catsurvey = catsurvey_south
        chipwcs = tim.subwcs
        bricks = bricks_touching_wcs(chipwcs, survey=catsurvey)
        for b in bricks:
            from legacypipe.outliers import read_outlier_mask_file
            print('Reading outlier mask for brick', b.brickname)
            ok = read_outlier_mask_file(catsurvey, [tim],
                                        b.brickname,
                                        subimage=False,
                                        output=False,
                                        ps=ps)
            if not ok:
                print('WARNING: failed to read outliers mask file for brick',
                      b.brickname)

    if opt.catalog:
        T = fits_table(opt.catalog)
    else:
        chipwcs = tim.subwcs
        T = get_catalog_in_wcs(chipwcs,
                               catsurvey_north,
                               catsurvey_south=catsurvey_south,
                               resolve_dec=resolve_dec)
        if T is None:
            print('No sources to photometer.')
            return None
        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    surveydir = survey.get_survey_dir()
    del survey

    if opt.move_gaia:
        # Gaia stars: move RA,Dec to the epoch of this image.
        I = np.flatnonzero(T.ref_epoch > 0)
        if len(I):
            from legacypipe.survey import radec_at_mjd
            print('Moving', len(I), 'Gaia stars to MJD', tim.time.toMjd())
            ra, dec = radec_at_mjd(T.ra[I], T.dec[I],
                                   T.ref_epoch[I].astype(float), T.pmra[I],
                                   T.pmdec[I], T.parallax[I], tim.time.toMjd())
            T.ra[I] = ra
            T.dec[I] = dec

    tnow = Time()
    print('Read catalog:', tnow - tlast)
    tlast = tnow

    cat = read_fits_catalog(T, bands='r')
    # Replace the brightness (which will be a NanoMaggies with g,r,z)
    # with a NanoMaggies with this image's band only.
    for src in cat:
        src.brightness = NanoMaggies(**{tim.band: 1.})

    tnow = Time()
    print('Parse catalog:', tnow - tlast)
    tlast = tnow

    print('Forced photom...')
    F = run_forced_phot(cat,
                        tim,
                        ceres=opt.ceres,
                        derivs=opt.derivs,
                        fixed_also=True,
                        agn=opt.agn,
                        do_forced=opt.forced,
                        do_apphot=opt.apphot,
                        get_model=opt.save_model,
                        ps=ps,
                        timing=True,
                        ceres_threads=opt.ceres_threads)

    if opt.save_model:
        # unpack results
        F, model_img = F

    F.release = T.release
    F.brickid = T.brickid
    F.brickname = T.brickname
    F.objid = T.objid

    F.camera = np.array([ccd.camera] * len(F))
    F.expnum = np.array([im.expnum] * len(F)).astype(np.int64)
    F.ccdname = np.array([im.ccdname] * len(F))

    # "Denormalizing"
    F.filter = np.array([tim.band] * len(F))
    F.mjd = np.array([tim.primhdr['MJD-OBS']] * len(F))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(F)).astype(np.float32)
    F.psfsize = np.array([tim.psf_fwhm * tim.imobj.pixscale] * len(F)).astype(
        np.float32)
    F.ccd_cuts = np.array([ccd.ccd_cuts] * len(F))
    F.airmass = np.array([ccd.airmass] * len(F))
    ### --> also add units to the dict below so the FITS headers have units
    F.sky = np.array([tim.midsky / tim.zpscale / tim.imobj.pixscale**2] *
                     len(F)).astype(np.float32)
    # in the same units as the depth maps -- flux inverse-variance.
    F.psfdepth = np.array([(1. / (tim.sig1 / tim.psfnorm)**2)] *
                          len(F)).astype(np.float32)
    F.galdepth = np.array([(1. / (tim.sig1 / tim.galnorm)**2)] *
                          len(F)).astype(np.float32)
    # F.psfdepth = np.array([-2.5 * (np.log10(5. * tim.sig1 / tim.psfnorm) - 9)] * len(F)).astype(np.float32)
    # F.galdepth = np.array([-2.5 * (np.log10(5. * tim.sig1 / tim.galnorm) - 9)] * len(F)).astype(np.float32)

    # super units questions here
    if opt.derivs:
        cosdec = np.cos(np.deg2rad(T.dec))
        F.dra = (F.flux_dra / F.flux) * 3600. / cosdec
        F.ddec = (F.flux_ddec / F.flux) * 3600.
        F.dra_ivar = F.flux_dra_ivar * (F.flux / 3600. * cosdec)**2
        F.ddec_ivar = F.flux_ddec_ivar * (F.flux / 3600.)**2
        F.delete_column('flux_dra')
        F.delete_column('flux_ddec')
        F.delete_column('flux_dra_ivar')
        F.delete_column('flux_ddec_ivar')
        F.flux = F.flux_fixed
        F.flux_ivar = F.flux_fixed_ivar
        F.delete_column('flux_fixed')
        F.delete_column('flux_fixed_ivar')

        for c in ['dra', 'ddec', 'dra_ivar', 'ddec_ivar', 'flux', 'flux_ivar']:
            F.set(c, F.get(c).astype(np.float32))

    F.ra = T.ra
    F.dec = T.dec

    ok, x, y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x - 1).astype(np.float32)
    F.y = (y - 1).astype(np.float32)

    h, w = tim.shape
    F.dqmask = tim.dq[np.clip(np.round(F.y).astype(int), 0, h - 1),
                      np.clip(np.round(F.x).astype(int), 0, w - 1)]

    program_name = sys.argv[0]
    ## FIXME -- from catalog?
    release = 8002
    version_hdr = get_version_header(program_name, surveydir, release)
    filename = getattr(ccd, 'image_filename')
    if filename is None:
        # HACK -- print only two directory names + filename of CPFILE.
        fname = os.path.basename(im.imgfn.strip())
        d = os.path.dirname(im.imgfn)
        d1 = os.path.basename(d)
        d = os.path.dirname(d)
        d2 = os.path.basename(d)
        filename = os.path.join(d2, d1, fname)
        print('Trimmed filename to', filename)
    version_hdr.add_record(
        dict(name='CPFILE', value=filename, comment='CP file'))
    version_hdr.add_record(dict(name='CPHDU', value=im.hdu, comment='CP ext'))
    version_hdr.add_record(
        dict(name='CAMERA', value=ccd.camera, comment='Camera'))
    version_hdr.add_record(
        dict(name='EXPNUM', value=im.expnum, comment='Exposure num'))
    version_hdr.add_record(
        dict(name='CCDNAME', value=im.ccdname, comment='CCD name'))
    version_hdr.add_record(
        dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(
        dict(name='PLVER', value=ccd.plver, comment='CP pipeline version'))
    version_hdr.add_record(
        dict(name='PLPROCID', value=ccd.plprocid, comment='CP pipeline id'))
    version_hdr.add_record(
        dict(name='PROCDATE', value=ccd.procdate, comment='CP image DATE'))

    keys = [
        'TELESCOP', 'OBSERVAT', 'OBS-LAT', 'OBS-LONG', 'OBS-ELEV', 'INSTRUME'
    ]
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    if opt.save_model or opt.save_data:
        hdr = fitsio.FITSHDR()
        tim.getWcs().wcs.add_to_header(hdr)
    if opt.save_model:
        fitsio.write(opt.save_model, model_img, header=hdr, clobber=True)
        print('Wrote', opt.save_model)
    if opt.save_data:
        fitsio.write(opt.save_data, tim.getImage(), header=hdr, clobber=True)
        print('Wrote', opt.save_data)

    tnow = Time()
    print('Forced phot:', tnow - tlast)
    return F, version_hdr
예제 #4
0
def run_one_ccd(survey, catsurvey_north, catsurvey_south, resolve_dec, ccd,
                opt, zoomslice, ps):
    from functools import reduce
    from legacypipe.bits import DQ_BITS

    tlast = Time()
    #print('Opt:', opt)
    im = survey.get_image_object(ccd)
    print('Run_one_ccd: checking cache', survey.cache_dir)
    if survey.cache_dir is not None:
        im.check_for_cached_files(survey)
    if opt.do_calib:
        im.run_calibs(splinesky=True)

    tim = im.get_tractor_image(slc=zoomslice,
                               pixPsf=True,
                               constant_invvar=opt.constant_invvar,
                               hybridPsf=opt.hybrid_psf,
                               normalizePsf=opt.normalize_psf,
                               old_calibs_ok=True,
                               trim_edges=False)
    print('Got tim:', tim)  #, 'x0,y0', tim.x0, tim.y0)
    chipwcs = tim.subwcs
    H, W = tim.shape

    tnow = Time()
    print('Read image:', tnow - tlast)
    tlast = tnow

    if ccd.camera == 'decam':
        # Halo subtraction
        from legacypipe.halos import subtract_one
        from legacypipe.reference import mask_radius_for_mag, read_gaia
        ref_margin = mask_radius_for_mag(0.)
        mpix = int(np.ceil(ref_margin * 3600. / chipwcs.pixel_scale()))
        marginwcs = chipwcs.get_subimage(-mpix, -mpix, W + 2 * mpix,
                                         H + 2 * mpix)
        gaia = read_gaia(marginwcs, None)
        keeprad = np.ceil(gaia.keep_radius * 3600. /
                          chipwcs.pixel_scale()).astype(int)
        _, xx, yy = chipwcs.radec2pixelxy(gaia.ra, gaia.dec)
        # cut to those touching the chip
        gaia.cut((xx > -keeprad) * (xx < W + keeprad) * (yy > -keeprad) *
                 (yy < H + keeprad))
        Igaia, = np.nonzero(gaia.isgaia * gaia.pointsource)
        halostars = gaia[Igaia]
        print('Got', len(gaia), 'Gaia stars,', len(halostars),
              'for halo subtraction')
        moffat = True
        halos = subtract_one((tim, halostars, moffat))
        tim.data -= halos

    # The "north" and "south" directories often don't have
    # 'survey-bricks" files of their own -- use the 'survey' one
    # instead.
    if catsurvey_south is not None:
        try:
            catsurvey_south.get_bricks_readonly()
        except:
            catsurvey_south.bricks = survey.get_bricks_readonly()
    if catsurvey_north is not None:
        try:
            catsurvey_north.get_bricks_readonly()
        except:
            catsurvey_north.bricks = survey.get_bricks_readonly()

    # Apply outlier masks
    outlier_header = None
    outlier_mask = None
    posneg_mask = None
    if opt.outlier_mask is not None:
        posneg_mask = np.zeros(tim.shape, np.uint8)
    # Outliers masks are computed within a survey (north/south for dr9), and are stored
    # in a brick-oriented way, in the results directories.
    north_ccd = (ccd.camera.strip() != 'decam')
    catsurvey = catsurvey_north
    if not north_ccd and catsurvey_south is not None:
        catsurvey = catsurvey_south
    bricks = bricks_touching_wcs(chipwcs, survey=catsurvey)
    for b in bricks:
        print(
            'Reading outlier mask for brick', b.brickname, ':',
            catsurvey.find_file('outliers_mask',
                                brick=b.brickname,
                                output=False))
        ok = read_outlier_mask_file(catsurvey, [tim],
                                    b.brickname,
                                    pos_neg_mask=posneg_mask,
                                    subimage=False,
                                    output=False,
                                    ps=ps)
        if not ok:
            print('WARNING: failed to read outliers mask file for brick',
                  b.brickname)

    if opt.outlier_mask is not None:
        outlier_mask = np.zeros((ccd.height, ccd.width), np.uint8)
        outlier_mask[tim.y0:tim.y0 + H, tim.x0:tim.x0 + W] = posneg_mask
        del posneg_mask
        # Grab original image headers (including WCS)
        im = survey.get_image_object(ccd)
        imhdr = im.read_image_header()
        imhdr['CAMERA'] = ccd.camera
        imhdr['EXPNUM'] = ccd.expnum
        imhdr['CCDNAME'] = ccd.ccdname
        imhdr['IMGFILE'] = ccd.image_filename.strip()
        outlier_header = imhdr

    if opt.catalog:
        T = fits_table(opt.catalog)
    else:
        chipwcs = tim.subwcs
        T = get_catalog_in_wcs(chipwcs,
                               survey,
                               catsurvey_north,
                               catsurvey_south=catsurvey_south,
                               resolve_dec=resolve_dec)
        if T is None:
            print('No sources to photometer.')
            return None
        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    surveydir = survey.get_survey_dir()
    del survey

    if opt.move_gaia:
        # Gaia stars: move RA,Dec to the epoch of this image.
        I = np.flatnonzero(T.ref_epoch > 0)
        if len(I):
            print('Moving', len(I), 'Gaia stars to MJD', tim.time.toMjd())
            ra, dec = radec_at_mjd(T.ra[I], T.dec[I],
                                   T.ref_epoch[I].astype(float), T.pmra[I],
                                   T.pmdec[I], T.parallax[I], tim.time.toMjd())
            T.ra[I] = ra
            T.dec[I] = dec

    tnow = Time()
    print('Read catalog:', tnow - tlast)
    tlast = tnow

    # Find SGA galaxies outside this chip and subtract them before we begin.
    chipwcs = tim.subwcs
    _, xx, yy = chipwcs.radec2pixelxy(T.ra, T.dec)
    W, H = chipwcs.get_width(), chipwcs.get_height()
    sga_out = (T.ref_cat == 'L3') * np.logical_not(
        (xx >= 1) * (xx <= W) * (yy >= 1) * (yy <= H))
    I = np.flatnonzero(sga_out)
    if len(I):
        print(len(I), 'SGA galaxies are outside the image.  Subtracting...')
        cat = read_fits_catalog(T[I], bands=[tim.band])
        tr = Tractor([tim], cat)
        mod = tr.getModelImage(0)
        tim.data -= mod
        I = np.flatnonzero(np.logical_not(sga_out))
        T.cut(I)

    cat = read_fits_catalog(T, bands='r')
    # Replace the brightness (which will be a NanoMaggies with g,r,z)
    # with a NanoMaggies with this image's band only.
    for src in cat:
        src.brightness = NanoMaggies(**{tim.band: 1.})

    tnow = Time()
    print('Parse catalog:', tnow - tlast)
    tlast = tnow

    print('Forced photom...')
    F = run_forced_phot(cat,
                        tim,
                        ceres=opt.ceres,
                        derivs=opt.derivs,
                        fixed_also=True,
                        agn=opt.agn,
                        do_forced=opt.forced,
                        do_apphot=opt.apphot,
                        get_model=opt.save_model,
                        ps=ps,
                        timing=True,
                        ceres_threads=opt.ceres_threads)

    if opt.save_model:
        # unpack results
        F, model_img = F

    F.release = T.release
    F.brickid = T.brickid
    F.brickname = T.brickname
    F.objid = T.objid

    F.camera = np.array([ccd.camera] * len(F))
    F.expnum = np.array([im.expnum] * len(F), dtype=np.int64)
    F.ccdname = np.array([im.ccdname] * len(F))

    # "Denormalizing"
    F.filter = np.array([tim.band] * len(F))
    F.mjd = np.array([tim.primhdr['MJD-OBS']] * len(F))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(F), dtype=np.float32)
    F.psfsize = np.array([tim.psf_fwhm * tim.imobj.pixscale] * len(F),
                         dtype=np.float32)
    F.ccd_cuts = np.array([ccd.ccd_cuts] * len(F))
    F.airmass = np.array([ccd.airmass] * len(F), dtype=np.float32)
    ### --> also add units to the dict below so the FITS headers have units
    F.sky = np.array([tim.midsky / tim.zpscale / tim.imobj.pixscale**2] *
                     len(F),
                     dtype=np.float32)
    # in the same units as the depth maps -- flux inverse-variance.
    F.psfdepth = np.array([(1. / (tim.sig1 / tim.psfnorm)**2)] * len(F),
                          dtype=np.float32)
    F.galdepth = np.array([(1. / (tim.sig1 / tim.galnorm)**2)] * len(F),
                          dtype=np.float32)
    F.fwhm = np.array([tim.psf_fwhm] * len(F), dtype=np.float32)
    F.skyrms = np.array([ccd.skyrms] * len(F), dtype=np.float32)
    F.ccdzpt = np.array([ccd.ccdzpt] * len(F), dtype=np.float32)
    F.ccdrarms = np.array([ccd.ccdrarms] * len(F), dtype=np.float32)
    F.ccddecrms = np.array([ccd.ccddecrms] * len(F), dtype=np.float32)
    F.ccdphrms = np.array([ccd.ccdphrms] * len(F), dtype=np.float32)

    if opt.derivs:
        cosdec = np.cos(np.deg2rad(T.dec))
        with np.errstate(divide='ignore', invalid='ignore'):
            F.dra = (F.flux_dra / F.flux) * 3600. / cosdec
            F.ddec = (F.flux_ddec / F.flux) * 3600.
        F.dra[F.flux == 0] = 0.
        F.ddec[F.flux == 0] = 0.
        F.dra_ivar = F.flux_dra_ivar * (F.flux / 3600. * cosdec)**2
        F.ddec_ivar = F.flux_ddec_ivar * (F.flux / 3600.)**2
        F.delete_column('flux_dra')
        F.delete_column('flux_ddec')
        F.delete_column('flux_dra_ivar')
        F.delete_column('flux_ddec_ivar')
        F.flux = F.flux_fixed
        F.flux_ivar = F.flux_fixed_ivar
        F.delete_column('flux_fixed')
        F.delete_column('flux_fixed_ivar')

        for c in ['dra', 'ddec', 'dra_ivar', 'ddec_ivar', 'flux', 'flux_ivar']:
            F.set(c, F.get(c).astype(np.float32))

    F.ra = T.ra
    F.dec = T.dec

    _, x, y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x - 1).astype(np.float32)
    F.y = (y - 1).astype(np.float32)

    h, w = tim.shape
    ix = np.round(F.x).astype(int)
    iy = np.round(F.y).astype(int)
    F.dqmask = tim.dq[np.clip(iy, 0, h - 1), np.clip(ix, 0, w - 1)]
    # Set an OUT-OF-BOUNDS bit.
    F.dqmask[reduce(np.logical_or,
                    [ix < 0, ix >= w, iy < 0, iy >= h])] |= DQ_BITS['edge2']

    program_name = sys.argv[0]
    ## FIXME -- from catalog?
    release = 9999
    version_hdr = get_version_header(program_name, surveydir, release)
    filename = getattr(ccd, 'image_filename')
    if filename is None:
        # HACK -- print only two directory names + filename of CPFILE.
        fname = os.path.basename(im.imgfn.strip())
        d = os.path.dirname(im.imgfn)
        d1 = os.path.basename(d)
        d = os.path.dirname(d)
        d2 = os.path.basename(d)
        filename = os.path.join(d2, d1, fname)
        print('Trimmed filename to', filename)
    version_hdr.add_record(
        dict(name='CPFILE', value=filename, comment='CP file'))
    version_hdr.add_record(dict(name='CPHDU', value=im.hdu, comment='CP ext'))
    version_hdr.add_record(
        dict(name='CAMERA', value=ccd.camera, comment='Camera'))
    version_hdr.add_record(
        dict(name='EXPNUM', value=im.expnum, comment='Exposure num'))
    version_hdr.add_record(
        dict(name='CCDNAME', value=im.ccdname, comment='CCD name'))
    version_hdr.add_record(
        dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(
        dict(name='PLVER', value=ccd.plver, comment='CP pipeline version'))
    version_hdr.add_record(
        dict(name='PLPROCID', value=ccd.plprocid, comment='CP pipeline id'))
    version_hdr.add_record(
        dict(name='PROCDATE', value=ccd.procdate, comment='CP image DATE'))

    keys = [
        'TELESCOP', 'OBSERVAT', 'OBS-LAT', 'OBS-LONG', 'OBS-ELEV', 'INSTRUME'
    ]
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    if opt.save_model or opt.save_data:
        hdr = fitsio.FITSHDR()
        tim.getWcs().wcs.add_to_header(hdr)
    if opt.save_model:
        fitsio.write(opt.save_model, model_img, header=hdr, clobber=True)
        print('Wrote', opt.save_model)
    if opt.save_data:
        fitsio.write(opt.save_data, tim.getImage(), header=hdr, clobber=True)
        print('Wrote', opt.save_data)

    tnow = Time()
    print('Forced phot:', tnow - tlast)
    return F, version_hdr, outlier_mask, outlier_header
예제 #5
0
def main():
    import optparse
    from astrometry.util.plotutils import PlotSequence
    from astrometry.util.util import Tan

    parser = optparse.OptionParser(usage='%prog [options] incat.fits out.fits')
    parser.add_option('-r', '--ralo',  dest='ralo',  type=float,
                      help='Minimum RA')
    parser.add_option('-R', '--rahi',  dest='rahi',  type=float,
                      help='Maximum RA')
    parser.add_option('-d', '--declo', dest='declo', type=float,
                      help='Minimum Dec')
    parser.add_option('-D', '--dechi', dest='dechi', type=float,
                      help='Maximum Dec')

    parser.add_option('-b', '--band', dest='bands', action='append', type=int,
                      default=[], help='WISE band to photometer (default: 1,2)')

    parser.add_option('-u', '--unwise', dest='unwise_dir',
                      default='unwise-coadds',
                      help='Directory containing unWISE coadds')

    parser.add_option('--no-ceres', dest='ceres', action='store_false',
                      default=True,
                      help='Use scipy lsqr rather than Ceres Solver?')

    parser.add_option('--ceres-block', '-B', dest='ceresblock', type=int,
                      default=8,
                      help='Ceres image block size (default: %default)')

    parser.add_option('--plots', dest='plots',
                      default=False, action='store_true')
    parser.add_option('--save-fits', dest='save_fits',
                      default=False, action='store_true')

    # parser.add_option('--ellipses', action='store_true',
    #                  help='Assume catalog shapes are ellipse descriptions (not r,ab,phi)')

    # parser.add_option('--ra', help='Center RA')
    # parser.add_option('--dec', help='Center Dec')
    # parser.add_option('--width', help='Degrees width (in RA*cos(Dec))')
    # parser.add_option('--height', help='Degrees height (Dec)')
    opt, args = parser.parse_args()
    if len(args) != 2:
        parser.print_help()
        sys.exit(-1)

    if len(opt.bands) == 0:
        opt.bands = [1, 2]
    # Allow specifying bands like "123"
    bb = []
    for band in opt.bands:
        for s in str(band):
            bb.append(int(s))
    opt.bands = bb
    print('Bands', opt.bands)

    ps = None
    if opt.plots:
        ps = PlotSequence('unwise')

    infn, outfn = args

    T = fits_table(infn)
    print('Read', len(T), 'sources from', infn)
    if opt.declo is not None:
        T.cut(T.dec >= opt.declo)
    if opt.dechi is not None:
        T.cut(T.dec <= opt.dechi)

    # Let's be a bit smart about RA wrap-around.  Compute the 'center'
    # of the RA points, use the cross product against that to define
    # inequality (clockwise-of).
    r = np.deg2rad(T.ra)
    x = np.mean(np.cos(r))
    y = np.mean(np.sin(r))
    rr = np.hypot(x, y)
    x /= rr
    y /= rr
    midra = np.rad2deg(np.arctan2(y, x))
    midra += 360. * (midra < 0)
    xx = np.cos(r)
    yy = np.sin(r)
    T.cross = x * yy - y * xx
    minra = T.ra[np.argmin(T.cross)]
    maxra = T.ra[np.argmax(T.cross)]

    if opt.ralo is not None:
        r = np.deg2rad(opt.ralo)
        xx = np.cos(r)
        yy = np.sin(r)
        crosscut = x * yy - y * xx
        T.cut(T.cross >= crosscut)
        print('Cut to', len(T), 'with RA >', opt.ralo)

    if opt.rahi is not None:
        r = np.deg2rad(opt.rahi)
        xx = np.cos(r)
        yy = np.sin(r)
        crosscut = x * yy - y * xx
        T.cut(T.cross <= crosscut)
        print('Cut to', len(T), 'with RA <', opt.rahi)
    if opt.declo is None:
        opt.declo = T.dec.min()
    if opt.dechi is None:
        opt.dechi = T.dec.max()
    if opt.ralo is None:
        opt.ralo = T.ra[np.argmin(T.cross)]
    if opt.rahi is None:
        opt.rahi = T.ra[np.argmax(T.cross)]
    T.delete_column('cross')

    print('RA range:', opt.ralo, opt.rahi)
    print('Dec range:', opt.declo, opt.dechi)

    x = np.mean([np.cos(np.deg2rad(r)) for r in (opt.ralo, opt.rahi)])
    y = np.mean([np.sin(np.deg2rad(r)) for r in (opt.ralo, opt.rahi)])
    midra = np.rad2deg(np.arctan2(y, x))
    midra += 360. * (midra < 0)
    middec = (opt.declo + opt.dechi) / 2.

    print('RA,Dec center:', midra, middec)

    pixscale = 2.75 / 3600.
    H = (opt.dechi - opt.declo) / pixscale
    dra = 2. * min(np.abs(midra - opt.ralo), np.abs(midra - opt.rahi))
    W = dra * np.cos(np.deg2rad(middec)) / pixscale

    margin = 5
    W = int(W) + margin * 2
    H = int(H) + margin * 2
    print('W,H', W, H)
    targetwcs = Tan(midra, middec, (W + 1) / 2., (H + 1) / 2.,
                    -pixscale, 0., 0., pixscale, float(W), float(H))
    #print('Target WCS:', targetwcs)

    ra0, dec0 = targetwcs.pixelxy2radec(0.5, 0.5)
    ra1, dec1 = targetwcs.pixelxy2radec(W + 0.5, H + 0.5)
    roiradecbox = [ra0, ra1, dec0, dec1]
    #print('ROI RA,Dec box', roiradecbox)

    tiles = unwise_tiles_touching_wcs(targetwcs)
    print('Cut to', len(tiles), 'unWISE tiles')

    disable_galaxy_cache()

    cols = T.get_columns()
    all_ptsrcs = not('type' in cols)
    if not all_ptsrcs:
        assert('shapeexp' in cols)
        assert('shapedev' in cols)
        assert('fracdev' in cols)

    wanyband = 'w'

    print('Creating Tractor catalog...')
    cat = []
    for i, t in enumerate(T):
        pos = RaDecPos(t.ra, t.dec)
        flux = NanoMaggies(**{wanyband: 1.})
        if all_ptsrcs:
            cat.append(PointSource(pos, flux))
            continue

        tt = t.type.strip()
        if tt in ['PTSRC', 'STAR', 'S']:
            cat.append(PointSource(pos, flux))
        elif tt in ['EXP', 'E']:
            shape = EllipseE(*t.shapeexp)
            cat.append(ExpGalaxy(pos, flux, shape))
        elif tt in ['DEV', 'D']:
            shape = EllipseE(*t.shapedev)
            cat.append(DevGalaxy(pos, flux, shape))
        elif tt in ['COMP', 'C']:
            eshape = EllipseE(*t.shapeexp)
            dshape = EllipseE(*t.shapedev)
            cat.append(FixedCompositeGalaxy(pos, flux, t.fracdev,
                                            eshape, dshape))
        else:
            print('Did not understand row', i, 'of input catalog:')
            t.about()
            assert(False)

    W = unwise_forcedphot(cat, tiles, roiradecbox=roiradecbox,
                          bands=opt.bands, unwise_dir=opt.unwise_dir,
                          use_ceres=opt.ceres, ceres_block=opt.ceresblock,
                          save_fits=opt.save_fits, ps=ps)
    W.writeto(outfn)
예제 #6
0
def scan_dchisq(seeing, target_dchisq, ps, e1=0.):
    pixscale = 0.262
    psfsigma = seeing / pixscale / 2.35
    print('PSF sigma:', psfsigma, 'pixels')
    psf = GaussianMixturePSF(1., 0., 0., psfsigma**2, psfsigma**2, 0.)

    sig1 = 0.01
    psfnorm = 1./(2. * np.sqrt(np.pi) * psfsigma)
    detsig1 = sig1 / psfnorm

    sz = 50
    cd = pixscale / 3600.
    wcs = Tan(0., 0., float(sz/2), float(sz/2), -cd, 0., 0., cd,
              float(sz), float(sz))
    band = 'r'

    tim = Image(data=np.zeros((sz,sz)), inverr=np.ones((sz,sz)) / sig1,
                psf=psf,
                wcs = ConstantFitsWcs(wcs),
                photocal = LinearPhotoCal(1., band=band))
    
    re_vals = np.logspace(-1., 0., 50)
    
    all_runs = []

    mods = []
    
    for i,re in enumerate(re_vals):
        true_src = ExpGalaxy(RaDecPos(0., 0.),
                             NanoMaggies(**{band: 1.}),
                             EllipseE(re, e1, 0.))
        print('True source:', true_src)
        tr = Tractor([tim], [true_src])
        tr.freezeParams('images')
        true_mod = tr.getModelImage(0)

        dchisq_none = np.sum((true_mod * tim.inverr)**2)
        scale = np.sqrt(target_dchisq / dchisq_none)

        true_src.brightness.setParams([scale])

        true_mod = tr.getModelImage(0)
        dchisq_none = np.sum((true_mod * tim.inverr)**2)

        mods.append(true_mod)
        
        tim.data = true_mod
        
        exp_src = true_src.copy()
        psf_src = PointSource(true_src.pos.copy(), true_src.brightness.copy())
        simp_src = SimpleGalaxy(true_src.pos.copy(), true_src.brightness.copy())

        dchisqs = []
        #for src in [psf_src, simp_src, exp_src]:
        for src in [psf_src, simp_src]:
            src.freezeParam('pos')
            #print('Fitting source:', src)
            #src.printThawedParams()
            tr.catalog[0] = src
            tr.optimize_loop()
            #print('Fitted:', src)
            mod = tr.getModelImage(0)
            dchisqs.append(dchisq_none - np.sum(((true_mod - mod) * tim.inverr)**2))
            #print('dchisq:', dchisqs[-1])
        dchisqs.append(dchisq_none)
        
        all_runs.append([re,] + dchisqs)

    all_runs = np.array(all_runs)

    re = all_runs[:,0]
    dchi_psf  = all_runs[:,1]
    dchi_simp = all_runs[:,2]
    dchi_exp  = all_runs[:,3]

    dchi_ps = np.maximum(dchi_psf, dchi_simp)
    dchi_cut1 = dchi_ps + 3+9
    dchi_cut2 = dchi_ps + dchi_psf * 0.02
    dchi_cut3 = dchi_ps + dchi_psf * 0.008
    
    plt.clf()
    plt.plot(re, dchi_psf, 'k-', label='PSF')
    plt.plot(re, dchi_simp, 'b-', label='SIMP')
    plt.plot(re, dchi_exp, 'r-', label='EXP')

    plt.plot(re, dchi_cut2, 'm--', alpha=0.5, lw=2, label='Cut: 2%')
    plt.plot(re, dchi_cut3, 'm:',  alpha=0.5, lw=2, label='Cut: 0.08%')
    plt.plot(re, dchi_cut1, 'm-',  alpha=0.5, lw=2, label='Cut: 12')

    plt.xlabel('True r_e (arcsec)')
    plt.ylabel('dchisq')
    #plt.legend(loc='lower left')
    plt.legend(loc='upper right')
    tt = 'Seeing = %g arcsec, S/N ~ %i' % (seeing, int(np.round(np.sqrt(target_dchisq))))
    if e1 != 0.:
        tt += ', Ellipticity %g' % e1
    plt.title(tt)
    plt.ylim(0.90 * target_dchisq, 1.05 * target_dchisq)

    # aspect = 1.2
    # ax = plt.axis()
    # dre  = (ax[1]-ax[0]) / 20 / aspect
    # dchi = (ax[3]-ax[2]) / 20
    # I = np.linspace(0, len(re_vals)-1, 8).astype(int)
    # for mod,re in [(mods[i], re_vals[i]) for i in I]:
    #     print('extent:', [re-dre, re+dre, ax[2], ax[2]+dchi])
    #     plt.imshow(mod, interpolation='nearest', origin='lower', aspect='auto',
    #                extent=[re-dre, re+dre, ax[2], ax[2]+dchi], cmap='gray')
    # plt.axis(ax)
        
    ps.savefig()
예제 #7
0
def run_sed_matched_filters(SEDs,
                            bands,
                            detmaps,
                            detivs,
                            omit_xy,
                            targetwcs,
                            nsigma=5,
                            saddle_fraction=0.1,
                            saddle_min=2.,
                            saturated_pix=None,
                            exclusion_radius=4.,
                            veto_map=None,
                            mp=None,
                            plots=False,
                            ps=None,
                            rgbimg=None):
    '''
    Runs a given set of SED-matched filters.

    Parameters
    ----------
    SEDs : list of (name, sed) tuples
        The SEDs to run.  The `sed` values are lists the same length
        as `bands`.
    bands : list of string
        The band names of `detmaps` and `detivs`.
    detmaps : numpy array, float
        Detection maps for each of the listed `bands`.
    detivs : numpy array, float
        Inverse-variances of the `detmaps`.
    omit_xy : None, or (xx,yy,rr) tuple
        Existing sources to avoid: x, y, radius.
    targetwcs : WCS object
        WCS object to use to convert pixel values into RA,Decs for the
        returned Tractor PointSource objects.
    nsigma : float, optional
        Detection threshold
    saturated_pix : None or list of numpy arrays, booleans
        Passed through to sed_matched_detection.
        A map of pixels that are always considered "hot" when
        determining whether a new source touches hot pixels of an
        existing source.
    exclusion_radius: int
        How many pixels around an existing source to veto
    plots : boolean, optional
        Create plots?
    ps : PlotSequence object
        Create plots?
    mp : multiproc object
        Multiprocessing

    Returns
    -------
    Tnew : fits_table
        Table of new sources detected
    newcat : list of PointSource objects
        Newly detected objects, with positions and fluxes, as Tractor
        PointSource objects.
    hot : numpy array of bool
        "Hot pixels" containing sources.

    See also
    --------
    sed_matched_detection : run a single SED-matched filter.

    '''
    from astrometry.util.fits import fits_table
    from tractor import PointSource, RaDecPos, NanoMaggies

    if omit_xy is not None:
        xx, yy, rr = omit_xy
        n0 = len(xx)
    else:
        xx, yy, rr = [], [], []
        n0 = 0

    H, W = detmaps[0].shape
    hot = np.zeros((H, W), bool)

    peaksn = []
    apsn = []

    for sedname, sed in SEDs:
        if plots:
            pps = ps
        else:
            pps = None
        sedhot, px, py, peakval, apval = sed_matched_detection(
            sedname,
            sed,
            detmaps,
            detivs,
            bands,
            xx,
            yy,
            rr,
            nsigma=nsigma,
            saddle_fraction=saddle_fraction,
            saddle_min=saddle_min,
            saturated_pix=saturated_pix,
            veto_map=veto_map,
            ps=pps,
            rgbimg=rgbimg)
        if sedhot is None:
            continue
        info('SED', sedname, ':', len(px), 'new peaks')
        hot |= sedhot
        # With an empty xx, np.append turns it into a double!
        xx = np.append(xx, px).astype(int)
        yy = np.append(yy, py).astype(int)
        rr = np.append(rr, np.zeros_like(px) + exclusion_radius).astype(int)
        peaksn.extend(peakval)
        apsn.extend(apval)

    # New peaks:
    peakx = xx[n0:]
    peaky = yy[n0:]

    Tnew = None
    newcat = []
    if len(peakx):
        # Add sources for the new peaks we found
        pr, pd = targetwcs.pixelxy2radec(peakx + 1, peaky + 1)
        info('Adding', len(pr), 'new sources')
        # Also create FITS table for new sources
        Tnew = fits_table()
        Tnew.ra = pr
        Tnew.dec = pd
        Tnew.ibx = peakx
        Tnew.iby = peaky
        assert (len(peaksn) == len(Tnew))
        assert (len(apsn) == len(Tnew))
        Tnew.peaksn = np.array(peaksn)
        Tnew.apsn = np.array(apsn)
        for r, d, x, y in zip(pr, pd, peakx, peaky):
            fluxes = dict([(band, detmap[y, x])
                           for band, detmap in zip(bands, detmaps)])
            newcat.append(
                PointSource(RaDecPos(r, d), NanoMaggies(order=bands,
                                                        **fluxes)))
    return Tnew, newcat, hot
예제 #8
0
파일: unwise.py 프로젝트: geordie666/SGA
def unwise_coadds(onegal,
                  galaxy=None,
                  radius_mosaic=30,
                  radius_mask=None,
                  pixscale=2.75,
                  ref_pixscale=0.262,
                  output_dir=None,
                  unwise_dir=None,
                  verbose=False,
                  log=None,
                  centrals=True):
    '''Generate custom unWISE cutouts.
    
    radius_mosaic and radius_mask in arcsec
    
    pixscale: WISE pixel scale in arcsec/pixel; make this smaller than 2.75
    to oversample.

    '''
    import fitsio
    import matplotlib.pyplot as plt

    from astrometry.util.util import Tan
    from astrometry.util.fits import fits_table
    from astrometry.libkd.spherematch import match_radec
    from astrometry.util.resample import resample_with_wcs, ResampleError
    from wise.forcedphot import unwise_tiles_touching_wcs
    from wise.unwise import get_unwise_tractor_image
    from tractor import Tractor, Image, NanoMaggies

    from legacypipe.survey import imsave_jpeg
    from legacypipe.catalog import read_fits_catalog

    if galaxy is None:
        galaxy = 'galaxy'

    if output_dir is None:
        output_dir = '.'

    if unwise_dir is None:
        unwise_dir = os.environ.get('UNWISE_COADDS_DIR')

    if radius_mask is None:
        radius_mask = radius_mosaic
        radius_search = 5.0  # [arcsec]
    else:
        radius_search = radius_mask

    # Initialize the WCS object.
    W = H = np.ceil(2 * radius_mosaic / pixscale).astype('int')  # [pixels]
    targetwcs = Tan(onegal['RA'], onegal['DEC'], (W + 1) / 2.0, (H + 1) / 2.0,
                    -pixscale / 3600.0, 0.0, 0.0, pixscale / 3600.0, float(W),
                    float(H))

    # Read the custom Tractor catalog.
    tractorfile = os.path.join(output_dir, '{}-tractor.fits'.format(galaxy))
    if not os.path.isfile(tractorfile):
        print('Missing Tractor catalog {}'.format(tractorfile),
              flush=True,
              file=log)
        return 0
    primhdr = fitsio.read_header(tractorfile)

    cat = fits_table(tractorfile)
    print('Read {} sources from {}'.format(len(cat), tractorfile),
          flush=True,
          file=log)

    keep = np.ones(len(cat)).astype(bool)
    if centrals:
        # Find the large central galaxy and mask out (ignore) all the models
        # which are within its elliptical mask.

        # This algorithm will have to change for mosaics not centered on large
        # galaxies, e.g., in galaxy groups.
        m1, m2, d12 = match_radec(cat.ra,
                                  cat.dec,
                                  onegal['RA'],
                                  onegal['DEC'],
                                  radius_search / 3600.0,
                                  nearest=False)
        if len(m1) == 0:
            print('No central galaxies found at the central coordinates!',
                  flush=True,
                  file=log)
        else:
            pixfactor = ref_pixscale / pixscale  # shift the optical Tractor positions
            for mm in m1:
                morphtype = cat.type[mm].strip()
                if morphtype == 'EXP' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapeexp_e1[mm], cat.shapeexp_e2[
                        mm], cat.shapeexp_r[mm]  # [arcsec]
                elif morphtype == 'DEV' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapedev_e1[mm], cat.shapedev_e2[
                        mm], cat.shapedev_r[mm]  # [arcsec]
                else:
                    r50 = None

                if r50:
                    majoraxis = r50 * 5 / pixscale  # [pixels]
                    ba, phi = SGA.misc.convert_tractor_e1e2(e1, e2)
                    these = SGA.misc.ellipse_mask(W / 2, W / 2, majoraxis,
                                                  ba * majoraxis,
                                                  np.radians(phi),
                                                  cat.bx * pixfactor,
                                                  cat.by * pixfactor)
                    if np.sum(these) > 0:
                        #keep[these] = False
                        pass
                print('Hack!')
                keep[mm] = False

            #srcs = read_fits_catalog(cat)
            #_srcs = np.array(srcs)[~keep].tolist()
            #mod = SGA.misc.srcs2image(_srcs, ConstantFitsWcs(targetwcs), psf_sigma=3.0)
            #import matplotlib.pyplot as plt
            ##plt.imshow(mod, origin='lower') ; plt.savefig('junk.png')
            #plt.imshow(np.log10(mod), origin='lower') ; plt.savefig('junk.png')
            #pdb.set_trace()

    srcs = read_fits_catalog(cat)
    for src in srcs:
        src.freezeAllBut('brightness')
    #srcs_nocentral = np.array(srcs)[keep].tolist()
    cat_nocentral = cat[keep]

    ## Find and remove all the objects within XX arcsec of the target
    ## coordinates.
    #m1, m2, d12 = match_radec(T.ra, T.dec, onegal['RA'], onegal['DEC'], 5/3600.0, nearest=False)
    #if len(d12) == 0:
    #    print('No matching galaxies found -- probably not what you wanted.')
    #    #raise ValueError
    #    nocentral = np.ones(len(T)).astype(bool)
    #else:
    #    nocentral = ~np.isin(T.objid, T[m1].objid)
    #T_nocentral = T[nocentral]

    # Find and read the overlapping unWISE tiles.  Assume the targetwcs is
    # axis-aligned and that the edge midpoints yield the RA, Dec limits (true
    # for TAN).  Note: the way the roiradec box is used, the min/max order
    # doesn't matter.
    r, d = targetwcs.pixelxy2radec(np.array([1, W, W / 2, W / 2]),
                                   np.array([H / 2, H / 2, 1, H]))
    roiradec = [r[0], r[1], d[2], d[3]]

    tiles = unwise_tiles_touching_wcs(targetwcs)

    wbands = [1, 2, 3, 4]
    wanyband = 'w'
    vega_to_ab = dict(w1=2.699, w2=3.339, w3=5.174, w4=6.620)

    # Convert the AB WISE fluxes in the Tractor catalog to Vega nanomaggies so
    # they're consistent with the coadds, below.
    for band in wbands:
        f = cat.get('flux_w{}'.format(band))
        e = cat.get('flux_ivar_w{}'.format(band))
        print('Setting negative fluxes equal to zero!')
        f[f < 0] = 0
        #f[f/e < 3] = 0
        f *= 10**(0.4 * vega_to_ab['w{}'.format(band)])

    coimgs = [np.zeros((H, W), np.float32) for b in wbands]
    comods = [np.zeros((H, W), np.float32) for b in wbands]
    comods_nocentral = [np.zeros((H, W), np.float32) for b in wbands]
    con = [np.zeros((H, W), np.uint8) for b in wbands]

    for iband, band in enumerate(wbands):
        for ii, src in enumerate(srcs):
            src.setBrightness(
                NanoMaggies(
                    **{wanyband: cat.get('flux_w{}'.format(band))[ii]}))
        srcs_nocentral = np.array(srcs)[keep].tolist()
        #srcs_nocentral = np.array(srcs)[nocentral].tolist()

        # The tiles have some overlap, so for each source, keep the fit in the
        # tile whose center is closest to the source.
        for tile in tiles:
            #print('Reading tile {}'.format(tile.coadd_id))
            tim = get_unwise_tractor_image(unwise_dir,
                                           tile.coadd_id,
                                           band,
                                           bandname=wanyband,
                                           roiradecbox=roiradec)
            if tim is None:
                print('Actually, no overlap with tile {}'.format(
                    tile.coadd_id))
                continue
            print('Read image {} with shape {}'.format(tile.coadd_id,
                                                       tim.shape))

            def _unwise_mod(tim, use_cat, use_srcs, margin=10):
                # Select sources in play.
                wisewcs = tim.wcs.wcs
                timH, timW = tim.shape
                ok, x, y = wisewcs.radec2pixelxy(use_cat.ra, use_cat.dec)
                x = (x - 1.).astype(np.float32)
                y = (y - 1.).astype(np.float32)
                I = np.flatnonzero((x >= -margin) * (x < timW + margin) *
                                   (y >= -margin) * (y < timH + margin))
                #print('Found {} sources within the image + margin = {} pixels'.format(len(I), margin))

                subcat = [use_srcs[i] for i in I]
                tractor = Tractor([tim], subcat)
                mod = tractor.getModelImage(0)
                return mod

            mod = _unwise_mod(tim, cat, srcs)
            mod_nocentral = _unwise_mod(tim, cat_nocentral, srcs_nocentral)

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(targetwcs, tim.wcs.wcs)
            except ResampleError:
                continue
            if len(Yo) == 0:
                continue

            # The models are already in AB nanomaggies, but the tiles / tims are
            # in Vega nanomaggies, so convert them here.
            coimgs[iband][Yo, Xo] += tim.getImage()[Yi, Xi]
            comods[iband][Yo, Xo] += mod[Yi, Xi]
            comods_nocentral[iband][Yo, Xo] += mod_nocentral[Yi, Xi]
            con[iband][Yo, Xo] += 1

        ## Convert back to nanomaggies.
        #vega2ab = vega_to_ab['w{}'.format(band)]
        #coimgs[iband] *= 10**(-0.4 * vega2ab)
        #comods[iband] *= 10**(-0.4 * vega2ab)
        #comods_nocentral[iband] *= 10**(-0.4 * vega2ab)

    for img, mod, mod_nocentral, n in zip(coimgs, comods, comods_nocentral,
                                          con):
        img /= np.maximum(n, 1)
        mod /= np.maximum(n, 1)
        mod_nocentral /= np.maximum(n, 1)

    coresids = [img - mod for img, mod in list(zip(coimgs, comods))]

    # Subtract the model image which excludes the central (comod_nocentral)
    # from the data (coimg) to isolate the light of the central
    # (coimg_central).
    coimgs_central = [
        img - mod for img, mod in list(zip(coimgs, comods_nocentral))
    ]

    # Write out the final images with and without the central and converted into
    # AB nanomaggies.
    for coadd, imtype in zip((coimgs, comods, comods_nocentral),
                             ('image', 'model', 'model-nocentral')):
        for img, band in zip(coadd, wbands):
            vega2ab = vega_to_ab['w{}'.format(band)]
            fitsfile = os.path.join(
                output_dir, '{}-{}-W{}.fits'.format(galaxy, imtype, band))
            if verbose:
                print('Writing {}'.format(fitsfile))
            fitsio.write(fitsfile, img * 10**(-0.4 * vega2ab), clobber=True)

    # Generate color WISE images.
    kwa = dict(mn=-1, mx=100, arcsinh=0.5)
    #kwa = dict(mn=-0.05, mx=1., arcsinh=0.5)
    #kwa = dict(mn=-0.1, mx=2., arcsinh=None)

    for imgs, imtype in zip(
        (coimgs, comods, coresids, comods_nocentral, coimgs_central),
        ('image', 'model', 'resid', 'model-nocentral', 'image-central')):
        rgb = _unwise_to_rgb(imgs[:2], **kwa)  # W1, W2
        jpgfile = os.path.join(output_dir,
                               '{}-{}-W1W2.jpg'.format(galaxy, imtype))
        if verbose:
            print('Writing {}'.format(jpgfile))
        imsave_jpeg(jpgfile, rgb, origin='lower')

    return 1
예제 #9
0
def get_reference_sources(survey,
                          targetwcs,
                          pixscale,
                          bands,
                          tycho_stars=True,
                          gaia_stars=True,
                          large_galaxies=True,
                          star_clusters=True):

    from legacypipe.survey import GaiaSource
    from legacypipe.survey import LegacyEllipseWithPriors
    from tractor import NanoMaggies, RaDecPos
    from tractor.galaxy import ExpGalaxy
    from tractor.ellipses import EllipseESoft

    H, W = targetwcs.shape
    H, W = int(H), int(W)

    # How big of a margin to search for bright stars and star clusters --
    # this should be based on the maximum radius they are considered to
    # affect.
    ref_margin = 0.125
    mpix = int(np.ceil(ref_margin * 3600. / pixscale))
    marginwcs = targetwcs.get_subimage(-mpix, -mpix, W + 2 * mpix,
                                       H + 2 * mpix)

    refs = []

    # Tycho-2 stars
    if tycho_stars:
        tycho = read_tycho2(survey, marginwcs)
        if len(tycho):
            refs.append(tycho)

    # Add Gaia stars
    gaia = None
    if gaia_stars:
        from astrometry.libkd.spherematch import match_radec
        gaia = read_gaia(marginwcs)
    if gaia is not None:
        gaia.isbright = (gaia.phot_g_mean_mag < 13.)
        gaia.ismedium = (gaia.phot_g_mean_mag < 16.)
        gaia.donotfit = np.zeros(len(gaia), bool)
        # Handle sources that appear in both Gaia and Tycho-2 by
        # dropping the entry from Tycho-2.
        if len(gaia) and len(tycho):
            # Before matching, apply proper motions to bring them to
            # the same epoch.  We want to use the more-accurate Gaia
            # proper motions, so rewind Gaia positions to the
            # approximate epoch of Tycho-2: 1991.5.
            cosdec = np.cos(np.deg2rad(gaia.dec))
            gra = gaia.ra + (1991.5 - gaia.ref_epoch) * gaia.pmra / (
                3600. * 1000.) / cosdec
            gdec = gaia.dec + (1991.5 - gaia.ref_epoch) * gaia.pmdec / (3600. *
                                                                        1000.)
            I, J, _ = match_radec(tycho.ra,
                                  tycho.dec,
                                  gra,
                                  gdec,
                                  1. / 3600.,
                                  nearest=True)
            debug('Matched', len(I), 'Tycho-2 stars to Gaia stars.')
            if len(I):
                keep = np.ones(len(tycho), bool)
                keep[I] = False
                tycho.cut(keep)
                gaia.isbright[J] = True
        if gaia is not None and len(gaia) > 0:
            refs.append(gaia)

    # Read the catalog of star (open and globular) clusters and add them to the
    # set of reference stars (with the isbright bit set).
    if star_clusters:
        clusters = read_star_clusters(marginwcs)
        if clusters is not None:
            debug('Found', len(clusters), 'star clusters nearby')
            clusters.iscluster = np.ones(len(clusters), bool)
            refs.append(clusters)

    # Read large galaxies nearby.
    if large_galaxies:
        galaxies = read_large_galaxies(survey, targetwcs)
        if galaxies is not None:
            # Resolve possible Gaia-large-galaxy duplicates
            if gaia and len(gaia):
                I, J, _ = match_radec(galaxies.ra,
                                      galaxies.dec,
                                      gaia.ra,
                                      gaia.dec,
                                      2. / 3600.,
                                      nearest=True)
                print('Matched', len(I), 'large galaxies to Gaia stars.')
                if len(I):
                    gaia.donotfit[J] = True
            refs.append(galaxies)

    refcat = None
    if len(refs):
        refs = merge_tables([r for r in refs if r is not None],
                            columns='fillzero')
    if len(refs) == 0:
        return None, None

    refs.radius_pix = np.ceil(refs.radius * 3600. / pixscale).astype(int)

    ok, xx, yy = targetwcs.radec2pixelxy(refs.ra, refs.dec)
    # ibx = integer brick coords
    refs.ibx = np.round(xx - 1.).astype(int)
    refs.iby = np.round(yy - 1.).astype(int)

    # cut ones whose position + radius are outside the brick bounds.
    refs.cut((xx > -refs.radius_pix) * (xx < W + refs.radius_pix) *
             (yy > -refs.radius_pix) * (yy < H + refs.radius_pix))
    # mark ones that are actually inside the brick area.
    refs.in_bounds = ((refs.ibx >= 0) * (refs.ibx < W) * (refs.iby >= 0) *
                      (refs.iby < H))

    for col in [
            'isbright', 'ismedium', 'islargegalaxy', 'iscluster', 'donotfit'
    ]:
        if not col in refs.get_columns():
            refs.set(col, np.zeros(len(refs), bool))

    ## Create Tractor sources from reference stars
    refcat = []
    for g in refs:
        if g.donotfit or g.iscluster:
            refcat.append(None)

        elif g.islargegalaxy:
            fluxes = dict([(band, NanoMaggies.magToNanomaggies(g.mag))
                           for band in bands])
            assert (np.all(np.isfinite(list(fluxes.values()))))
            rr = g.radius * 3600. / 0.5  # factor of two accounts for R(25)-->reff
            pa = 180 - g.pa
            if not np.isfinite(pa):
                pa = 0.
            logr, ee1, ee2 = EllipseESoft.rAbPhiToESoft(rr, g.ba, pa)
            gal = ExpGalaxy(RaDecPos(g.ra, g.dec),
                            NanoMaggies(order=bands, **fluxes),
                            LegacyEllipseWithPriors(logr, ee1, ee2))
            refcat.append(gal)

        else:
            # Gaia star -- which we want to create a source for, regardless of
            # whether it is marked medium | bright (or neither).
            refcat.append(GaiaSource.from_catalog(g, bands))

    for src in refcat:
        if src:
            src.is_reference_source = True

    return refs, refcat
예제 #10
0
def read_fits_catalog(T,
                      hdr=None,
                      invvars=False,
                      bands='grz',
                      allbands='ugrizY',
                      ellipseClass=None):
    from tractor import NanoMaggies
    '''
    This is currently a weird hybrid of dynamic and hard-coded.

    Return list of tractor Sources.

    If invvars=True, return sources,invvars
    where invvars is a list matching sources.getParams()
    '''
    if hdr is None:
        hdr = T._header
    rev_typemap = dict([(v, k) for k, v in fits_typemap.items()])

    ivbandcols = []

    ibands = np.array([allbands.index(b) for b in bands])

    ivs = []
    cat = []
    for i, t in enumerate(T):
        clazz = rev_typemap[t.type.strip()]
        pos = RaDecPos(t.ra, t.dec)
        assert (np.isfinite(t.ra))
        assert (np.isfinite(t.dec))

        shorttype = fits_short_typemap[clazz]

        assert (np.all(np.isfinite(t.decam_flux[ibands])))
        br = NanoMaggies(order=bands, **dict(zip(bands, t.decam_flux[ibands])))
        params = [pos, br]
        if invvars:
            # ASSUME & hard-code that the position and brightness are
            # the first params
            ivs.extend([t.ra_ivar, t.dec_ivar] +
                       list(t.decam_flux_ivar[ibands]))

        if issubclass(clazz, (DevGalaxy, ExpGalaxy)):
            if ellipseClass is not None:
                eclazz = ellipseClass
            else:
                # hard-code knowledge that third param is the ellipse
                eclazz = hdr['TR_%s_T3' % shorttype]
                # drop any double-quoted weirdness
                eclazz = eclazz.replace('"', '')
                # look up that string... to avoid eval()
                eclazz = ellipse_types[eclazz]

            if issubclass(clazz, DevGalaxy):
                assert (np.all([np.isfinite(x) for x in t.shapedev]))
                ell = eclazz(*t.shapedev)
            else:
                assert (np.all([np.isfinite(x) for x in t.shapeexp]))
                ell = eclazz(*t.shapeexp)
            params.append(ell)
            if invvars:
                if issubclass(clazz, DevGalaxy):
                    ivs.extend(t.shapedev_ivar)
                else:
                    ivs.extend(t.shapeexp_ivar)

        elif issubclass(clazz, FixedCompositeGalaxy):
            # hard-code knowledge that params are fracDev, shapeE, shapeD
            assert (np.isfinite(t.fracdev))
            params.append(t.fracdev)
            if ellipseClass is not None:
                expeclazz = deveclazz = ellipseClass
            else:
                expeclazz = hdr['TR_%s_T4' % shorttype]
                deveclazz = hdr['TR_%s_T5' % shorttype]
                expeclazz = expeclazz.replace('"', '')
                deveclazz = deveclazz.replace('"', '')
                expeclazz = ellipse_types[expeclazz]
                deveclazz = ellipse_types[deveclazz]
            assert (np.all([np.isfinite(x) for x in t.shapedev]))
            assert (np.all([np.isfinite(x) for x in t.shapeexp]))
            ee = expeclazz(*t.shapeexp)
            de = deveclazz(*t.shapedev)
            params.append(ee)
            params.append(de)

            if invvars:
                ivs.append(t.fracdev_ivar)
                ivs.extend(t.shapeexp_ivar)
                ivs.extend(t.shapedev_ivar)

        elif issubclass(clazz, PointSource):
            pass
        else:
            raise RuntimeError('Unknown class %s' % str(clazz))

        src = clazz(*params)
        cat.append(src)

    if invvars:
        ivs = np.array(ivs)
        ivs[np.logical_not(np.isfinite(ivs))] = 0
        return cat, ivs
    return cat
예제 #11
0
def get_galaxy_sources(galaxies, bands):
    from legacypipe.catalog import fits_reverse_typemap
    from legacypipe.survey import (LegacySersicIndex, LegacyEllipseWithPriors,
                                   LogRadius, RexGalaxy)
    from tractor import NanoMaggies, RaDecPos, PointSource
    from tractor.ellipses import EllipseE, EllipseESoft
    from tractor.galaxy import DevGalaxy, ExpGalaxy
    from tractor.sersic import SersicGalaxy

    # Factor of HyperLEDA to set the galaxy max radius
    radius_max_factor = 2.

    srcs = [None for g in galaxies]

    # If we have pre-burned galaxies, re-create the Tractor sources for them.
    I, = np.nonzero(galaxies.preburned)
    for ii, g in zip(I, galaxies[I]):
        typ = fits_reverse_typemap[g.type.strip()]
        pos = RaDecPos(g.ra, g.dec)
        fluxes = dict([(band, g.get('flux_%s' % band)) for band in bands])
        bright = NanoMaggies(order=bands, **fluxes)
        shape = None
        # put the Rex branch first, because Rex is a subclass of ExpGalaxy!
        if issubclass(typ, RexGalaxy):
            assert (np.isfinite(g.shape_r))
            logre = np.log(g.shape_r)
            shape = LogRadius(logre)
            # set prior max at 2x SGA radius
            shape.setMaxLogRadius(logre + np.log(radius_max_factor))
        elif issubclass(typ, (DevGalaxy, ExpGalaxy, SersicGalaxy)):
            assert (np.isfinite(g.shape_r))
            assert (np.isfinite(g.shape_e1))
            assert (np.isfinite(g.shape_e2))
            shape = EllipseE(g.shape_r, g.shape_e1, g.shape_e2)
            # switch to softened ellipse (better fitting behavior)
            shape = EllipseESoft.fromEllipseE(shape)
            # and then to our custom ellipse class
            logre = shape.logre
            shape = LegacyEllipseWithPriors(logre, shape.ee1, shape.ee2)
            assert (np.all(np.isfinite(shape.getParams())))
            # set prior max at 2x SGA radius
            shape.setMaxLogRadius(logre + np.log(radius_max_factor))

        if issubclass(typ, PointSource):
            src = typ(pos, bright)
        # this catches Rex too
        elif issubclass(typ, (DevGalaxy, ExpGalaxy)):
            src = typ(pos, bright, shape)
        elif issubclass(typ, (SersicGalaxy)):
            assert (np.isfinite(g.sersic))
            sersic = LegacySersicIndex(g.sersic)
            src = typ(pos, bright, shape, sersic)
        else:
            raise RuntimeError('Unknown preburned SGA source type "%s"' % typ)
        debug('Created', src)
        assert (np.isfinite(src.getLogPrior()))
        srcs[ii] = src

    # SGA parent catalog: 'preburned' is not set
    # This also can happen in the preburned/ellipse catalog when fitting
    # fails, or no-grz, etc.
    I, = np.nonzero(np.logical_not(galaxies.preburned))
    for ii, g in zip(I, galaxies[I]):
        # Initialize each source with an exponential disk--
        fluxes = dict([(band, NanoMaggies.magToNanomaggies(g.mag))
                       for band in bands])
        assert (np.all(np.isfinite(list(fluxes.values()))))
        rr = g.radius * 3600. / 2  # factor of two accounts for R(25)-->reff [arcsec]
        assert (np.isfinite(rr))
        assert (np.isfinite(g.ba))
        assert (np.isfinite(g.pa))
        ba = g.ba
        if ba <= 0.0 or ba > 1.0:
            # Make round!
            ba = 1.0
        logr, ee1, ee2 = EllipseESoft.rAbPhiToESoft(
            rr, ba, 180 - g.pa)  # note the 180 rotation
        assert (np.isfinite(logr))
        assert (np.isfinite(ee1))
        assert (np.isfinite(ee2))
        shape = LegacyEllipseWithPriors(logr, ee1, ee2)
        shape.setMaxLogRadius(logr + np.log(radius_max_factor))
        src = ExpGalaxy(RaDecPos(g.ra, g.dec),
                        NanoMaggies(order=bands, **fluxes), shape)
        assert (np.isfinite(src.getLogPrior()))
        src.needs_initial_flux = True
        srcs[ii] = src

    return srcs
예제 #12
0
def stage_galex_forced(
    survey=None,
    cat=None,
    T=None,
    targetwcs=None,
    targetrd=None,
    W=None, H=None,
    pixscale=None,
    brickname=None,
    galex_dir=None,
    brick=None,
    version_header=None,
    maskbits=None,
    mp=None,
    record_event=None,
    ps=None,
    plots=False,
    **kwargs):
    '''
    After the model fits are finished, we can perform forced
    photometry of the GALEX coadds.
    '''
    from legacypipe.runbrick import _add_stage_version
    from legacypipe.bits import MASKBITS
    #from legacypipe.galex import galex_phot, galex_tiles_touching_wcs
    #from legacypipe.unwise import unwise_phot, collapse_unwise_bitmask, unwise_tiles_touching_wcs
    from legacypipe.survey import wise_apertures_arcsec
    from tractor import NanoMaggies

    record_event and record_event('stage_galex_forced: starting')
    _add_stage_version(version_header, 'GALEX', 'galex_forced')

    galex_apertures_arcsec = wise_apertures_arcsec

    if not plots:
        ps = None

    # Skip if $GALEX_DIR or --galex-dir not set.
    if galex_dir is None:
        info('GALEX_DIR not set -- skipping GALEX')
        return None

    tiles = galex_tiles_touching_wcs(targetwcs, galex_dir)
    info('Cut to', len(tiles), 'GALEX tiles')

    # the way the roiradec box is used, the min/max order doesn't matter
    roiradec = [targetrd[0,0], targetrd[2,0], targetrd[0,1], targetrd[2,1]]

    # Sources to photometer
    do_phot = np.ones(len(cat), bool)

    # Drop sources within the CLUSTER mask from forced photometry.
    Icluster = None
    if maskbits is not None:
        incluster = (maskbits & MASKBITS['CLUSTER'] > 0)
        if np.any(incluster):
            print('Checking for sources inside CLUSTER mask')
            ra  = np.array([src.getPosition().ra  for src in cat])
            dec = np.array([src.getPosition().dec for src in cat])
            ok,xx,yy = targetwcs.radec2pixelxy(ra, dec)
            xx = np.round(xx - 1).astype(int)
            yy = np.round(yy - 1).astype(int)
            I = np.flatnonzero(ok * (xx >= 0)*(xx < W) * (yy >= 0)*(yy < H))
            if len(I):
                Icluster = I[incluster[yy[I], xx[I]]]
                print('Found', len(Icluster), 'of', len(cat), 'sources inside CLUSTER mask')
                do_phot[Icluster] = False
    Nskipped = len(do_phot) - np.sum(do_phot)

    gcat = []
    for i in np.flatnonzero(do_phot):
        src = cat[i]
        src = src.copy()
        src.setBrightness(NanoMaggies(galex=1.))
        gcat.append(src)

    # use pixelized PSF model
    pixpsf = True

    # Photometer the two bands in parallel
    args = []
    for band in ['n','f']:
        btiles = tiles[tiles.get('has_%s' % band)]
        if len(btiles) == 0:
            continue
        args.append((galex_dir, gcat, btiles, band, roiradec, pixpsf, ps))
    # Run the forced photometry!
    record_event and record_event('stage_galex_forced: photometry')
    phots = mp.map(galex_phot, args)
    record_event and record_event('stage_galex_forced: results')

    # Unpack results...
    GALEX = None
    if len(phots):
        # The "phot" results for the full-depth coadds are one table per
        # band.  Merge all those columns.
        galex_models = []
        for i,p in enumerate(phots[:len(args)]):
            if p is None:
                (_,_,tiles,band) = args[i][:4]
                print('"None" result from GALEX forced phot:', tiles, band)
                continue
            galex_models.extend(p.models)
            if GALEX is None:
                GALEX = p.phot
            else:
                GALEX.add_columns_from(p.phot)

        # Create the WCS into which we'll resample the tiles.
        # Same center as "targetwcs" but bigger pixel scale.
        gpixscale = 1.5
        gra  = np.array([src.getPosition().ra  for src in cat])
        gdec = np.array([src.getPosition().dec for src in cat])
        rc,dc = targetwcs.radec_center()
        ww = int(W * pixscale / gpixscale)
        hh = int(H * pixscale / gpixscale)
        gcoadds = GalexCoadd(rc, dc, ww, hh, gpixscale)
        gcoadds.add(galex_models)
        apphot = gcoadds.finish(survey, brickname, version_header,
                                apradec=(gra,gdec),
                                apertures=galex_apertures_arcsec/gpixscale)
        api,apd,apr = apphot
        for iband,band in enumerate(['n','f']):
            niceband = band + 'uv'
            GALEX.set('apflux_%s' % niceband, api[iband])
            GALEX.set('apflux_resid_%s' % niceband, apr[iband])
            d = apd[iband]
            iv = np.zeros_like(d)
            iv[d != 0.] = 1./(d[d != 0]**2)
            GALEX.set('apflux_ivar_%s' % niceband, iv)
            fluxcol = 'flux_'+niceband
            if not fluxcol in GALEX.get_columns():
                GALEX.set(fluxcol, np.zeros(len(GALEX), np.float32))
                GALEX.set('flux_ivar_'+niceband, np.zeros(len(GALEX), np.float32))

        if Nskipped > 0:
            assert(len(GALEX) == len(wcat))
            GALEX = _fill_skipped_values(GALEX, Nskipped, do_phot)
            assert(len(GALEX) == len(cat))
            assert(len(GALEX) == len(T))

    debug('Returning: GALEX', GALEX)
    if logger.isEnabledFor(logging.DEBUG):
        GALEX.about()

    return dict(GALEX=GALEX,
                version_header=version_header,
                galex_apertures_arcsec=galex_apertures_arcsec)
예제 #13
0
def run_one_ccd(survey, catsurvey, ccd, opt, zoomslice, ps):
    tlast = Time()

    im = survey.get_image_object(ccd)

    if opt.do_calib:
        #from legacypipe.survey import run_calibs
        #kwa = dict(splinesky=True)
        #run_calibs((im, kwa))
        im.run_calibs(splinesky=True)

    tim = im.get_tractor_image(slc=zoomslice, pixPsf=True, splinesky=True,
                               constant_invvar=opt.constant_invvar,
                               hybridPsf=opt.hybrid_psf,
                               normalizePsf=opt.normalize_psf,
                               old_calibs_ok=True)
    print('Got tim:', tim)

    tnow = Time()
    print('Read image:', tnow-tlast)
    tlast = tnow

    if opt.catalog:
        T = fits_table(opt.catalog)
    else:
        margin = 20
        TT = []
        chipwcs = tim.subwcs
        bricks = bricks_touching_wcs(chipwcs, survey=catsurvey)
        for b in bricks:
            # there is some overlap with this brick... read the catalog.
            fn = catsurvey.find_file('tractor', brick=b.brickname)
            if not os.path.exists(fn):
                print('WARNING: catalog', fn, 'does not exist.  Skipping!')
                continue
            print('Reading', fn)
            T = fits_table(fn, columns=[
                'ra', 'dec', 'brick_primary', 'type', 'release',
                'brickid', 'brickname', 'objid',
                'fracdev', 'flux_r',
                'shapedev_r', 'shapedev_e1', 'shapedev_e2',
                'shapeexp_r', 'shapeexp_e1', 'shapeexp_e2',
                'ref_epoch', 'pmra', 'pmdec', 'parallax'
            ])
            ok,xx,yy = chipwcs.radec2pixelxy(T.ra, T.dec)
            W,H = chipwcs.get_width(), chipwcs.get_height()
            I = np.flatnonzero((xx >= -margin) * (xx <= (W+margin)) *
                               (yy >= -margin) * (yy <= (H+margin)))
            T.cut(I)
            print('Cut to', len(T), 'sources within image + margin')
            T.cut(T.brick_primary)
            print('Cut to', len(T), 'on brick_primary')
            for col in ['out_of_bounds', 'left_blob']:
                if col in T.get_columns():
                    T.cut(T.get(col) == False)
                    print('Cut to', len(T), 'on', col)
            if len(T):
                TT.append(T)
        if len(TT) == 0:
            print('No sources to photometer.')
            return None
        T = merge_tables(TT, columns='fillzero')
        T._header = TT[0]._header
        del TT
        print('Total of', len(T), 'catalog sources')

        # Fix up various failure modes:
        # FixedCompositeGalaxy(pos=RaDecPos[240.51147402832561, 10.385488075518923], brightness=NanoMaggies: g=(flux -2.87), r=(flux -5.26), z=(flux -7.65), fracDev=FracDev(0.60177207), shapeExp=re=3.78351e-44, e1=9.30367e-13, e2=1.24392e-16, shapeDev=re=inf, e1=-0, e2=-0)
        # -> convert to EXP
        I, = np.nonzero([t == 'COMP' and not np.isfinite(r) for t,r in zip(T.type, T.shapedev_r)])
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to EXP')
            for i in I:
                T.type[i] = 'EXP'

        # Same thing with the exp component.
        # -> convert to DEV
        I, = np.nonzero([t == 'COMP' and not np.isfinite(r) for t,r in zip(T.type, T.shapeexp_r)])
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to DEV')
            for i in I:
                T.type[i] = 'DEV'

        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    surveydir = survey.get_survey_dir()
    del survey

    if opt.move_gaia:
        # Gaia stars: move RA,Dec to the epoch of this image.
        I = np.flatnonzero(T.ref_epoch > 0)
        if len(I):
            from legacypipe.survey import radec_at_mjd
            print('Moving', len(I), 'Gaia stars to MJD', tim.time.toMjd())
            ra,dec = radec_at_mjd(T.ra[I], T.dec[I], T.ref_epoch[I].astype(float),
                                  T.pmra[I], T.pmdec[I], T.parallax[I],
                                  tim.time.toMjd())
            T.ra [I] = ra
            T.dec[I] = dec

    kwargs = {}
    cols = T.get_columns()
    if 'flux_r' in cols and not 'decam_flux_r' in cols:
        kwargs.update(fluxPrefix='')

    tnow = Time()
    print('Read catalog:', tnow-tlast)
    tlast = tnow

    cat = read_fits_catalog(T, bands='r', **kwargs)
    # Replace the brightness (which will be a NanoMaggies with g,r,z)
    # with a NanoMaggies with this image's band only.
    for src in cat:
        src.brightness = NanoMaggies(**{tim.band: 1.})

    tnow = Time()
    print('Parse catalog:', tnow-tlast)
    tlast = tnow

    print('Forced photom...')
    F = run_forced_phot(cat, tim,
                        ceres=opt.ceres,
                        derivs=opt.derivs,
                        fixed_also=True,
                        agn=opt.agn,
                        do_forced=opt.forced,
                        do_apphot=opt.apphot,
                        get_model=opt.save_model,
                        ps=ps)

    if opt.save_model:
        # unpack results
        F,model_img = F

    F.release   = T.release
    F.brickid   = T.brickid
    F.brickname = T.brickname
    F.objid     = T.objid

    F.camera  = np.array([ccd.camera] * len(F))
    F.expnum  = np.array([im.expnum]  * len(F)).astype(np.int32)
    F.ccdname = np.array([im.ccdname] * len(F))

    # "Denormalizing"
    F.filter  = np.array([tim.band]               * len(F))
    F.mjd     = np.array([tim.primhdr['MJD-OBS']] * len(F))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(F)).astype(np.float32)
    F.psfsize = np.array([tim.psf_fwhm * tim.imobj.pixscale] * len(F)).astype(np.float32)
    #### FIXME -- units?
    ### --> also add units to the dict below so the FITS headers have units
    F.sky     = np.array([tim.midsky / tim.zpscale / tim.imobj.pixscale**2] * len(F)).astype(np.float32)
    # in the same units as the depth maps -- flux inverse-variance.
    F.psfdepth = np.array([(1. / (tim.sig1 / tim.psfnorm)**2)] * len(F)).astype(np.float32)
    F.galdepth = np.array([(1. / (tim.sig1 / tim.galnorm)**2)] * len(F)).astype(np.float32)
    # F.psfdepth = np.array([-2.5 * (np.log10(5. * tim.sig1 / tim.psfnorm) - 9)] * len(F)).astype(np.float32)
    # F.galdepth = np.array([-2.5 * (np.log10(5. * tim.sig1 / tim.galnorm) - 9)] * len(F)).astype(np.float32)

    # super units questions here
    if opt.derivs:
        cosdec = np.cos(np.deg2rad(T.dec))
        F.dra  = (F.flux_dra  / F.flux) * 3600. / cosdec
        F.ddec = (F.flux_ddec / F.flux) * 3600.
        F.dra_ivar  = F.flux_dra_ivar  * (F.flux / 3600. * cosdec)**2
        F.ddec_ivar = F.flux_ddec_ivar * (F.flux / 3600.)**2
        F.delete_column('flux_dra')
        F.delete_column('flux_ddec')
        F.delete_column('flux_dra_ivar')
        F.delete_column('flux_ddec_ivar')
        F.flux = F.flux_fixed
        F.flux_ivar = F.flux_fixed_ivar
        F.delete_column('flux_fixed')
        F.delete_column('flux_fixed_ivar')

        for c in ['dra', 'ddec', 'dra_ivar', 'ddec_ivar', 'flux', 'flux_ivar']:
            F.set(c, F.get(c).astype(np.float32))

    F.ra  = T.ra
    F.dec = T.dec

    ok,x,y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x-1).astype(np.float32)
    F.y = (y-1).astype(np.float32)

    ## FIXME -- read outlier_masks?

    h,w = tim.shape
    F.mask = tim.dq[np.clip(np.round(F.y).astype(int), 0, h-1),
                    np.clip(np.round(F.x).astype(int), 0, w-1)]

    program_name = sys.argv[0]
    ## FIXME -- from catalog?
    release = 0
    version_hdr = get_version_header(program_name, surveydir, release)
    filename = getattr(ccd, 'image_filename')
    if filename is None:
        # HACK -- print only two directory names + filename of CPFILE.
        fname = os.path.basename(im.imgfn.strip())
        d = os.path.dirname(im.imgfn)
        d1 = os.path.basename(d)
        d = os.path.dirname(d)
        d2 = os.path.basename(d)
        filename = os.path.join(d2, d1, fname)
        print('Trimmed filename to', filename)
    version_hdr.add_record(dict(name='CPFILE', value=filename, comment='CP file'))
    version_hdr.add_record(dict(name='CPHDU', value=im.hdu, comment='CP ext'))
    version_hdr.add_record(dict(name='CAMERA', value=ccd.camera, comment='Camera'))
    version_hdr.add_record(dict(name='EXPNUM', value=im.expnum, comment='Exposure num'))
    version_hdr.add_record(dict(name='CCDNAME', value=im.ccdname, comment='CCD name'))
    version_hdr.add_record(dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(dict(name='EXPOSURE',
                                value='%s-%s-%s' % (ccd.camera, im.expnum, im.ccdname),
                                comment='Name of this image'))
    version_hdr.add_record(dict(name='PLVER', value=ccd.plver, comment='CP pipeline version'))
    version_hdr.add_record(dict(name='PROCDATE', value=ccd.procdate, comment='CP image DATE'))

    keys = ['TELESCOP','OBSERVAT','OBS-LAT','OBS-LONG','OBS-ELEV',
            'INSTRUME']
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    if opt.save_model or opt.save_data:
        hdr = fitsio.FITSHDR()
        tim.getWcs().wcs.add_to_header(hdr)
    if opt.save_model:
        fitsio.write(opt.save_model, model_img, header=hdr, clobber=True)
        print('Wrote', opt.save_model)
    if opt.save_data:
        fitsio.write(opt.save_data, tim.getImage(), header=hdr, clobber=True)
        print('Wrote', opt.save_data)

    tnow = Time()
    print('Forced phot:', tnow-tlast)
    return F,version_hdr
예제 #14
0
    x = w // 2
if y is None:
    y = h // 2
psfmod = tim.psf.getPointSourcePatch(x, y).patch

from tractor.galaxy import ExpGalaxy
from tractor.ellipses import EllipseE
from tractor.patch import ModelMask

band = tim.band
if x is None:
    x = w // 2
if y is None:
    y = h // 2
pos = tim.wcs.pixelToPosition(x, y)
gal = SimpleGalaxy(pos, NanoMaggies(**{band: 1.}))
S = 32
mm = ModelMask(int(x - S), int(y - S), 2 * S + 1, 2 * S + 1)
galmod = gal.getModelPatch(tim, modelMask=mm).patch
print('Galaxy model shape', galmod.shape)

mx = max(psfmod.max(), galmod.max())
mn = min(psfmod.min(), galmod.min())
ima = dict(interpolation='nearest', origin='lower', vmin=mn, vmax=mx)

print('Range', mn, mx)

plt.clf()
plt.subplot(1, 2, 1)
plt.imshow(psfmod, **ima)
plt.title('PSF model')
예제 #15
0
def one_brick(X):
    (ibrick, brick) = X
    bands = ['g', 'r', 'z']

    print('Brick', brick.brickname)
    wcs = wcs_for_brick(brick, W=94, H=94, pixscale=10.)
    BH, BW = wcs.shape
    targetrd = np.array([
        wcs.pixelxy2radec(x, y)
        for x, y in [(1, 1), (BW, 1), (BW, BH), (1, BH), (1, 1)]
    ])
    survey = LegacySurveyData()
    C = survey.ccds_touching_wcs(wcs)
    if C is None:
        print('No CCDs touching brick')
        return None
    I = np.flatnonzero(C.ccd_cuts == 0)
    if len(I) == 0:
        print('No good CCDs touching brick')
        return None
    C.cut(I)
    print(len(C), 'CCDs touching brick')

    depths = {}
    for band in bands:
        d = np.zeros((BH, BW), np.float32)
        depths[band] = d

    npix = dict([(band, 0) for band in bands])
    nexps = dict([(band, 0) for band in bands])

    # survey.get_approx_wcs(ccd)
    for ccd in C:
        #im = survey.get_image_object(ccd)
        awcs = survey.get_approx_wcs(ccd)

        imh, imw = ccd.height, ccd.width
        x0, y0 = 0, 0
        x1 = x0 + imw
        y1 = y0 + imh
        imgpoly = [(1, 1), (1, imh), (imw, imh), (imw, 1)]
        ok, tx, ty = awcs.radec2pixelxy(targetrd[:-1, 0], targetrd[:-1, 1])
        tpoly = list(zip(tx, ty))
        clip = clip_polygon(imgpoly, tpoly)
        clip = np.array(clip)
        if len(clip) == 0:
            continue
        x0, y0 = np.floor(clip.min(axis=0)).astype(int)
        x1, y1 = np.ceil(clip.max(axis=0)).astype(int)
        #slc = slice(y0,y1+1), slice(x0,x1+1)
        awcs = awcs.get_subimage(x0, y0, x1 - x0, y1 - y0)
        ah, aw = awcs.shape

        #print('Image', ccd.expnum, ccd.ccdname, ccd.filter, 'overlap', x0,x1, y0,y1, '->', (1+x1-x0),'x',(1+y1-y0))

        # Find bbox in brick space
        r, d = awcs.pixelxy2radec([1, 1, aw, aw], [1, ah, ah, 1])
        ok, bx, by = wcs.radec2pixelxy(r, d)
        bx0 = np.clip(np.round(bx.min()).astype(int) - 1, 0, BW - 1)
        bx1 = np.clip(np.round(bx.max()).astype(int) - 1, 0, BW - 1)
        by0 = np.clip(np.round(by.min()).astype(int) - 1, 0, BH - 1)
        by1 = np.clip(np.round(by.max()).astype(int) - 1, 0, BH - 1)

        #print('Brick', bx0,bx1,by0,by1)

        band = ccd.filter[0]
        assert (band in bands)

        ccdzpt = ccd.ccdzpt + 2.5 * np.log10(ccd.exptime)

        psf_sigma = ccd.fwhm / 2.35
        psfnorm = 1. / (2. * np.sqrt(np.pi) * psf_sigma)
        orig_zpscale = zpscale = NanoMaggies.zeropointToScale(ccdzpt)
        sig1 = ccd.sig1 / orig_zpscale
        detsig1 = sig1 / psfnorm

        # print('Image', ccd.expnum, ccd.ccdname, ccd.filter,
        #       'PSF depth', -2.5 * (np.log10(5.*detsig1) - 9), 'exptime', ccd.exptime,
        #       'sig1', ccd.sig1, 'zpt', ccd.ccdzpt, 'fwhm', ccd.fwhm,
        #       'filename', ccd.image_filename.strip())

        depths[band][by0:by1 + 1, bx0:bx1 + 1] += (1. / detsig1**2)
        npix[band] += (y1 + 1 - y0) * (x1 + 1 - x0)
        nexps[band] += 1

    for band in bands:
        det = np.median(depths[band])
        # compute stats for 5-sigma detection
        with np.errstate(divide='ignore'):
            depth = 5. / np.sqrt(det)
        # that's flux in nanomaggies -- convert to mag
        depth = -2.5 * (np.log10(depth) - 9)
        if not np.isfinite(depth):
            depth = 0.

        depths[band] = depth
        #bricks.get('psfdepth_' + band)[ibrick] = depth
        print(brick.brickname, 'median PSF depth', band, ':', depth, 'npix',
              npix[band], 'nexp', nexps[band])
        #'npix', bricks.get('npix_'+band)[ibrick],
        #'nexp', bricks.get('nexp_'+band)[ibrick])

    return (npix, nexps, depths)
예제 #16
0
                '--no-wise', '--force-all', '--no-write', '--ceres',
                '--survey-dir', surveydir,
                '--outdir', 'out-testcase3-ceres',
                '--no-depth-cut'])
     sys.exit(0)
 
 # demo RexGalaxy, with plots
 if False:
     from legacypipe.survey import RexGalaxy
     from tractor import RaDecPos, NanoMaggies, PixPos
     from tractor import ScalarParam
     from tractor import Image, GaussianMixturePSF, LinearPhotoCal
     from legacypipe.survey import LogRadius
     rex = RexGalaxy(
         PixPos(1., 2.),
         NanoMaggies(r=3.),
         LogRadius(0.))
     print('Rex:', rex)
     print('Rex params:', rex.getParams())
     print('Rex nparams:', rex.numberOfParams())
     H,W = 100,100
     tim = Image(data=np.zeros((H,W), np.float32),
                 inverr=np.ones((H,W), np.float32),
                 psf=GaussianMixturePSF(1., 0., 0., 4., 4., 0.),
                 photocal=LinearPhotoCal(1., band='r'))
     derivs = rex.getParamDerivatives(tim)
     print('Derivs:', len(derivs))
     print('Rex params:', rex.getParamNames())
 
     import pylab as plt
     from astrometry.util.plotutils import PlotSequence
예제 #17
0
E = C[I]
print(len(E), 'exposures')
E.index = np.arange(len(E))
E.passnum = np.zeros(len(E), np.uint8)
E.depthfraction = np.zeros(len(E), np.float32)

# Compute which pass number each exposure would be called.
zp0 = DecamImage.nominal_zeropoints()
# HACK -- this is copied from obsbot
kx = dict(g = 0.178, r = 0.094, z = 0.060,)
for band in bands:
    B = E[E.filter == band]
    B.cut(np.argsort(B.seeing))

    Nsigma = 5.
    sig = NanoMaggies.magToNanomaggies(target[band]) / Nsigma
    targetiv = 1./sig**2

    for exp in B:
        thisdetiv = 1. / (exp.sig1 / exp.galnorm)**2
        # Which pass number would this image be assigned?
        trans = 10.**(-0.4 * (zp0[band] - exp.ccdzpt
                              - kx[band]*(exp.airmass - 1.)))
        seeing_good = exp.seeing < 1.3
        seeing_fair = exp.seeing < 2.0
        trans_good = trans > 0.9
        trans_fair = trans > 0.7
        if seeing_good and trans_good:
            E.passnum[exp.index] = 1
        elif ((seeing_good and trans_fair) or (seeing_fair and trans_good)):
            E.passnum[exp.index] = 2
예제 #18
0
def main():
    # I read a DESI DR8 target catalog, cut to ELGs, then took a narrow
    # r-mag slice around the peak of that distribution;
    # desi/target/catalogs/dr8/0.31.1/targets/main/resolve/targets-dr8-hp-1,5,11,50,55,60,83,84,86,89,91,98,119,155,158,174,186,187,190.fits')
    # Then took the median g and z mags
    # And opened the coadd invvar mags for a random brick in that footprint
    # (0701p000) to find the median per-pixel invvars.

    r = 23.0
    g = 23.4
    z = 22.2

    # Selecting EXPs, the peak of the shapeexp_r was ~ 0.75".
    r_e = 0.75

    # Image properties:

    giv = 77000.
    riv = 27000.
    ziv = 8000.

    # PSF sizes were roughly equal, 1.16, 1.17, 1.19"
    # -> sigma = 1.9 DECam pixels
    psf_sigma = 1.9

    H, W = 1000, 1000

    seed = 42
    np.random.seed(seed)

    ra, dec = 70., 1.
    brick = BrickDuck(ra, dec, 'custom-0700p010')
    wcs = wcs_for_brick(brick, W=W, H=H)
    bands = 'grz'

    tims = []
    for band, iv in zip(bands, [giv, riv, ziv]):
        img = np.zeros((H, W), np.float32)
        tiv = np.zeros_like(img) + iv
        s = psf_sigma**2
        psf = GaussianMixturePSF(1., 0., 0., s, s, 0.)
        twcs = ConstantFitsWcs(wcs)
        sky = ConstantSky(0.)
        photocal = LinearPhotoCal(1., band=band)

        tai = TAITime(None, mjd=55700.)

        tim = tractor.Image(data=img,
                            invvar=tiv,
                            psf=psf,
                            wcs=twcs,
                            sky=sky,
                            photocal=photocal,
                            name='fake %s' % band,
                            time=tai)
        tim.skyver = ('1', '1')
        tim.psfver = ('1', '1')
        tim.plver = '1'
        tim.x0 = tim.y0 = 0
        tim.subwcs = wcs
        tim.psfnorm = 1. / (2. * np.sqrt(np.pi) * psf_sigma)
        tim.galnorm = tim.psfnorm
        tim.propid = '2020A-000'
        tim.band = band
        tim.dq = None
        tim.sig1 = 1. / np.sqrt(iv)
        tim.psf_sigma = psf_sigma
        tim.primhdr = fitsio.FITSHDR()

        tims.append(tim)

    # Simulated catalog
    gflux = NanoMaggies.magToNanomaggies(g)
    rflux = NanoMaggies.magToNanomaggies(r)
    zflux = NanoMaggies.magToNanomaggies(z)
    box = 50
    CX, CY = np.meshgrid(np.arange(box // 2, W, box),
                         np.arange(box // 2, H, box))
    ny, nx = CX.shape
    BA, PHI = np.meshgrid(np.linspace(0.1, 1.0, nx), np.linspace(0., 180., ny))
    cat = []
    for cx, cy, ba, phi in zip(CX.ravel(), CY.ravel(), BA.ravel(),
                               PHI.ravel()):
        #print('x,y %.1f,%.1f, ba %.2f, phi %.2f' % (cx, cy, ba, phi))
        r, d = wcs.pixelxy2radec(cx + 1, cy + 1)
        src = ExpGalaxy(RaDecPos(r, d),
                        NanoMaggies(order=bands, g=gflux, r=rflux, z=zflux),
                        EllipseE.fromRAbPhi(r_e, ba, phi))
        cat.append(src)

    from legacypipe.catalog import prepare_fits_catalog
    TT = fits_table()
    TT.bx = CX.ravel()
    TT.by = CY.ravel()
    TT.ba = BA.ravel()
    TT.phi = PHI.ravel()

    tcat = tractor.Catalog(*cat)
    T2 = prepare_fits_catalog(tcat, None, TT, bands, save_invvars=False)
    T2.writeto('sim-cat.fits')

    tr = Tractor(tims, cat)

    for band, tim in zip(bands, tims):
        mod = tr.getModelImage(tim)
        mod += np.random.standard_normal(
            size=tim.shape) * 1. / tim.getInvError()
        fitsio.write('sim-%s.fits' % band, mod, clobber=True)
        tim.data = mod

    ccds = fits_table()
    ccds.filter = np.array([f for f in bands])
    ccds.ccd_cuts = np.zeros(len(ccds), np.int16)
    ccds.imgfn = np.array([tim.name for tim in tims])
    ccds.propid = np.array(['2020A-000'] * len(ccds))
    ccds.fwhm = np.zeros(len(ccds), np.float32) + psf_sigma * 2.35
    ccds.mjd_obs = np.zeros(len(ccds))
    ccds.camera = np.array(['fake'] * len(ccds))

    survey = FakeLegacySurvey(ccds, tims)

    import logging
    verbose = False
    if verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)
    # tractor logging is *soooo* chatty
    logging.getLogger('tractor.engine').setLevel(lvl + 10)

    run_brick(None,
              survey,
              radec=(ra, dec),
              width=W,
              height=H,
              do_calibs=False,
              gaia_stars=False,
              large_galaxies=False,
              tycho_stars=False,
              forceall=True,
              outliers=False)  #, stages=['image_coadds'])
예제 #19
0
def rbmain():
    travis = 'travis' in sys.argv

    extra_args = [
        '--old-calibs-ok',
        #'--verbose',
    ]
    if travis:
        extra_args.extend(
            ['--no-wise-ceres', '--no-gaia', '--no-large-galaxies'])

    if 'ceres' in sys.argv:
        surveydir = os.path.join(os.path.dirname(__file__), 'testcase3')
        main(args=[
            '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
            '--no-wise', '--force-all', '--no-write', '--ceres',
            '--survey-dir', surveydir, '--outdir', 'out-testcase3-ceres',
            '--no-depth-cut'
        ])
        sys.exit(0)

    # demo RexGalaxy, with plots
    if False:
        from legacypipe.survey import RexGalaxy
        from tractor import NanoMaggies, PixPos
        from tractor import Image, GaussianMixturePSF, LinearPhotoCal
        from legacypipe.survey import LogRadius
        rex = RexGalaxy(PixPos(1., 2.), NanoMaggies(r=3.), LogRadius(0.))
        print('Rex:', rex)
        print('Rex params:', rex.getParams())
        print('Rex nparams:', rex.numberOfParams())
        H, W = 100, 100
        tim = Image(data=np.zeros((H, W), np.float32),
                    inverr=np.ones((H, W), np.float32),
                    psf=GaussianMixturePSF(1., 0., 0., 4., 4., 0.),
                    photocal=LinearPhotoCal(1., band='r'))
        derivs = rex.getParamDerivatives(tim)
        print('Derivs:', len(derivs))
        print('Rex params:', rex.getParamNames())

        import pylab as plt
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence('rex')

        for d, nm in zip(derivs, rex.getParamNames()):
            plt.clf()
            plt.imshow(d.patch, interpolation='nearest', origin='lower')
            plt.title('Derivative %s' % nm)
            ps.savefig()

        sys.exit(0)

    # Test RexGalaxy

    surveydir = os.path.join(os.path.dirname(__file__), 'testcase6')
    outdir = 'out-testcase6-rex'
    main(args=[
        '--brick',
        '1102p240',
        '--zoom',
        '500',
        '600',
        '650',
        '750',
        '--force-all',
        '--no-write',
        '--no-wise',
        #'--rex', #'--plots',
        '--survey-dir',
        surveydir,
        '--outdir',
        outdir
    ] + extra_args)
    fn = os.path.join(outdir, 'tractor', '110', 'tractor-1102p240.fits')
    assert (os.path.exists(fn))
    T = fits_table(fn)
    assert (len(T) == 2)
    print('Types:', T.type)
    # Since there is a Tycho-2 star in the blob, forced to be PSF.
    assert (T.type[0] == 'PSF ')
    cmd = (
        '(cd %s && sha256sum -c %s)' %
        (outdir, os.path.join('tractor', '110', 'brick-1102p240.sha256sum')))
    print(cmd)
    rtn = os.system(cmd)
    assert (rtn == 0)

    # Test with a Tycho-2 star in the blob.

    surveydir = os.path.join(os.path.dirname(__file__), 'testcase6')
    outdir = 'out-testcase6'
    main(args=[
        '--brick', '1102p240', '--zoom', '500', '600', '650', '750',
        '--force-all', '--no-write', '--no-wise', '--survey-dir', surveydir,
        '--outdir', outdir
    ] + extra_args)
    fn = os.path.join(outdir, 'tractor', '110', 'tractor-1102p240.fits')
    assert (os.path.exists(fn))
    T = fits_table(fn)
    assert (len(T) == 2)
    print('Types:', T.type)
    # Since there is a Tycho-2 star in the blob, forced to be PSF.
    assert (T.type[0] == 'PSF ')

    # Test that we can run splinesky calib if required...

    from legacypipe.decam import DecamImage
    DecamImage.splinesky_boxsize = 128

    surveydir = os.path.join(os.path.dirname(__file__), 'testcase4')
    outdir = 'out-testcase4'

    fn = os.path.join(surveydir, 'calib', 'decam', 'splinesky', '00431',
                      '00431608', 'decam-00431608-N3.fits')
    if os.path.exists(fn):
        os.unlink(fn)

    main(args=[
        '--brick', '1867p255', '--zoom', '2050', '2300', '1150', '1400',
        '--force-all', '--no-write', '--coadd-bw', '--unwise-dir',
        os.path.join(surveydir, 'images', 'unwise'), '--unwise-tr-dir',
        os.path.join(surveydir, 'images', 'unwise-tr'), '--blob-image',
        '--no-hybrid-psf', '--survey-dir', surveydir, '--outdir', outdir
    ] + extra_args + ['-v'])
    print('Checking for calib file', fn)
    assert (os.path.exists(fn))

    # Wrap-around, hybrid PSF
    surveydir = os.path.join(os.path.dirname(__file__), 'testcase8')
    outdir = 'out-testcase8'

    main(args=[
        '--brick',
        '1209p050',
        '--zoom',
        '720',
        '1095',
        '3220',
        '3500',
        '--force-all',
        '--no-write',
        '--no-wise',  #'--plots',
        '--survey-dir',
        surveydir,
        '--outdir',
        outdir
    ] + extra_args)

    # Test with a Tycho-2 star + another saturated star in the blob.

    surveydir = os.path.join(os.path.dirname(__file__), 'testcase7')
    outdir = 'out-testcase7'
    # remove --no-gaia
    my_extra_args = [a for a in extra_args if a != '--no-gaia']
    os.environ['GAIA_CAT_DIR'] = os.path.join(surveydir, 'gaia-dr2')
    os.environ['GAIA_CAT_VER'] = '2'
    main(args=[
        '--brick',
        '1102p240',
        '--zoom',
        '250',
        '350',
        '1550',
        '1650',
        '--force-all',
        '--no-write',
        '--no-wise',  #'--plots',
        '--survey-dir',
        surveydir,
        '--outdir',
        outdir
    ] + my_extra_args)
    del os.environ['GAIA_CAT_DIR']
    del os.environ['GAIA_CAT_VER']
    fn = os.path.join(outdir, 'tractor', '110', 'tractor-1102p240.fits')
    assert (os.path.exists(fn))
    T = fits_table(fn)
    assert (len(T) == 4)

    # Check skipping blobs outside the brick's unique area.
    # (this now doesn't detect any sources at all, reasonably)
    # surveydir = os.path.join(os.path.dirname(__file__), 'testcase5')
    # outdir = 'out-testcase5'
    #
    # fn = os.path.join(outdir, 'tractor', '186', 'tractor-1867p255.fits')
    # if os.path.exists(fn):
    #     os.unlink(fn)
    #
    # main(args=['--brick', '1867p255', '--zoom', '0', '150', '0', '150',
    #            '--force-all', '--no-write', '--coadd-bw',
    #            '--survey-dir', surveydir,
    #            '--early-coadds',
    #            '--outdir', outdir] + extra_args)
    #
    # assert(os.path.exists(fn))
    # T = fits_table(fn)
    # assert(len(T) == 1)

    # Custom RA,Dec; blob ra,dec.
    surveydir = os.path.join(os.path.dirname(__file__), 'testcase4')
    outdir = 'out-testcase4b'
    # Catalog written with one entry (--blobradec)
    fn = os.path.join(outdir, 'tractor', 'cus',
                      'tractor-custom-186743p25461.fits')
    if os.path.exists(fn):
        os.unlink(fn)
    main(args=[
        '--radec', '186.743965', '25.461788', '--width', '250', '--height',
        '250', '--force-all', '--no-write', '--no-wise', '--blobradec',
        '186.740369', '25.453855', '--survey-dir', surveydir, '--outdir',
        outdir
    ] + extra_args)

    assert (os.path.exists(fn))
    T = fits_table(fn)
    assert (len(T) == 1)

    surveydir = os.path.join(os.path.dirname(__file__), 'testcase3')
    outdir = 'out-testcase3'
    checkpoint_fn = os.path.join(outdir, 'checkpoint.pickle')
    if os.path.exists(checkpoint_fn):
        os.unlink(checkpoint_fn)
    main(args=[
        '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
        '--no-wise', '--force-all', '--no-write', '--survey-dir', surveydir,
        '--outdir', outdir, '--checkpoint', checkpoint_fn,
        '--checkpoint-period', '1', '--threads', '2'
    ] + extra_args)

    # Read catalog into Tractor sources to test read_fits_catalog
    from legacypipe.catalog import read_fits_catalog
    from legacypipe.survey import LegacySurveyData, GaiaSource
    from tractor.galaxy import DevGalaxy
    from tractor import PointSource

    survey = LegacySurveyData(survey_dir=outdir)
    fn = survey.find_file('tractor', brick='2447p120')
    print('Checking', fn)
    T = fits_table(fn)
    cat = read_fits_catalog(T, fluxPrefix='')
    print('Read catalog:', cat)
    assert (len(cat) == 2)
    src = cat[0]
    assert (type(src) == DevGalaxy)
    assert (np.abs(src.pos.ra - 244.77973) < 0.00001)
    assert (np.abs(src.pos.dec - 12.07233) < 0.00001)
    src = cat[1]
    print('Source', src)
    assert (type(src) in [PointSource, GaiaSource])
    assert (np.abs(src.pos.ra - 244.77830) < 0.00001)
    assert (np.abs(src.pos.dec - 12.07250) < 0.00001)
    # DevGalaxy(pos=RaDecPos[244.77975494973529, 12.072348111713127], brightness=NanoMaggies: g=19.2, r=17.9, z=17.1, shape=re=2.09234, e1=-0.198453, e2=0.023652,
    # PointSource(RaDecPos[244.77833280764278, 12.072521274981987], NanoMaggies: g=25, r=23, z=21.7)

    # Check that we can run again, using that checkpoint file.
    main(args=[
        '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
        '--no-wise', '--force-all', '--no-write', '--survey-dir', surveydir,
        '--outdir', outdir, '--checkpoint', checkpoint_fn,
        '--checkpoint-period', '1', '--threads', '2'
    ] + extra_args)
    # Assert...... something?

    # Test --checkpoint without --threads
    main(args=[
        '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
        '--no-wise', '--force-all', '--no-write', '--survey-dir', surveydir,
        '--outdir', outdir, '--checkpoint', checkpoint_fn,
        '--checkpoint-period', '1'
    ] + extra_args)

    # MzLS + BASS data
    # surveydir2 = os.path.join(os.path.dirname(__file__), 'mzlsbass')
    # main(args=['--brick', '3521p002', '--zoom', '2400', '2450', '1200', '1250',
    #            '--no-wise', '--force-all', '--no-write',
    #            '--survey-dir', surveydir2,
    #            '--outdir', 'out-mzlsbass'])

    # From Kaylan's Bootes pre-DR4 run
    # surveydir2 = os.path.join(os.path.dirname(__file__), 'mzlsbass3')
    # main(args=['--brick', '2173p350', '--zoom', '100', '200', '100', '200',
    #            '--no-wise', '--force-all', '--no-write',
    #            '--survey-dir', surveydir2,
    #            '--outdir', 'out-mzlsbass3'] + extra_args)

    # With plots!
    main(args=[
        '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
        '--no-wise', '--force-all', '--no-write', '--survey-dir', surveydir,
        '--outdir', 'out-testcase3', '--plots', '--nblobs', '1'
    ] + extra_args)

    # Decals Image Simulations
    # Uncomment WHEN galsim build for Travis
    #os.environ["DECALS_SIM_DIR"]= os.path.join(os.path.dirname(__file__),'image_sims')
    #brick= '2447p120'
    #sim_main(args=['--brick', brick, '-n', '2', '-o', 'STAR', \
    #               '-ic', '1', '--rmag-range', '18', '26', '--threads', '1',\
    #               '--zoom', '1020', '1070', '2775', '2815'])
    # Check if correct files written out
    #rt_dir= os.path.join(os.getenv('DECALS_SIM_DIR'),brick,'star','001')
    #assert( os.path.exists(os.path.join(rt_dir,'../','metacat-'+brick+'-star.fits')) )
    #for fn in ['tractor-%s-star-01.fits' % brick,'simcat-%s-star-01.fits' % brick]:
    #    assert( os.path.exists(os.path.join(rt_dir,fn)) )
    #for fn in ['image','model','resid','simscoadd']:
    #    assert( os.path.exists(os.path.join(rt_dir,'qa-'+brick+'-star-'+fn+'-01.jpg')) )

    if not travis:
        # With ceres
        main(args=[
            '--brick', '2447p120', '--zoom', '1020', '1070', '2775', '2815',
            '--no-wise', '--force-all', '--no-write', '--ceres',
            '--survey-dir', surveydir, '--outdir', 'out-testcase3-ceres'
        ] + extra_args)
예제 #20
0
def read_fits_catalog(T,
                      hdr=None,
                      invvars=False,
                      bands='grz',
                      ellipseClass=EllipseE,
                      sersicIndexClass=SersicIndex):
    '''
    Return list of tractor Sources.

    If invvars=True, return sources,invvars
    where invvars is a list matching sources.getParams()

    If *ellipseClass* is set, assume that type for galaxy shapes; if None,
    read the type from the header.
    '''
    from tractor import NanoMaggies, RaDecPos
    if hdr is None:
        hdr = T._header
    rev_typemap = fits_reverse_typemap

    ivs = []
    cat = []
    for t in T:
        typestr = t.type.strip()
        clazz = rev_typemap[typestr]
        assert (np.isfinite(t.ra))
        assert (np.isfinite(t.dec))
        pos = RaDecPos(t.ra, t.dec)

        fluxes = {}
        for b in bands:
            fluxes[b] = t.get('flux_' + b)
            assert (np.all(np.isfinite(fluxes[b])))
        br = NanoMaggies(order=bands, **fluxes)

        params = [pos, br]
        if invvars:
            fluxivs = []
            for b in bands:
                fluxivs.append(t.get('flux_ivar_' + b))
            ivs.extend([t.ra_ivar, t.dec_ivar] + fluxivs)

        if issubclass(clazz, (DevGalaxy, ExpGalaxy, SersicGalaxy)):
            assert (np.isfinite(t.shape_r))
            assert (np.isfinite(t.shape_e1))
            assert (np.isfinite(t.shape_e2))
            ell = ellipseClass(t.shape_r, t.shape_e1, t.shape_e2)
            params.append(ell)
            if invvars:
                ivs.extend([t.shape_r_ivar, t.shape_e1_ivar, t.shape_e2_ivar])
        elif issubclass(clazz, PointSource):
            pass
        else:
            raise RuntimeError('Unknown class %s' % str(clazz))

        if issubclass(clazz, SersicGalaxy):
            assert (np.isfinite(t.sersic))
            si = sersicIndexClass(t.sersic)
            params.append(si)
            if invvars:
                ivs.append(t.sersic_ivar)

        src = clazz(*params)
        cat.append(src)

    if invvars:
        ivs = np.array(ivs)
        ivs[np.logical_not(np.isfinite(ivs))] = 0
        return cat, ivs
    return cat
예제 #21
0
    all_runs = []

    tim = Image(data=np.zeros((sz,sz)), inverr=np.ones((sz,sz)) / sig1,
                psf=psf,
                wcs = ConstantFitsWcs(wcs),
                photocal = LinearPhotoCal(1., band=band))
    
    for i,sn in enumerate(sn_vals):
        for j,re in enumerate(re_vals):
            ## HACK -- this is the flux required for a PSF to be
            ## detected at target S/N... adjust for galaxy?
            flux = sn * detsig1
            # Create round EXP galaxy
            #PixPos(sz/2, sz/2),
            true_src = ExpGalaxy(RaDecPos(0., 0.),
                                 NanoMaggies(**{band: flux}),
                                 EllipseE(re, 0., 0.))
            
            tr = Tractor([tim], [true_src])
            tr.freezeParams('images')
            true_mod = tr.getModelImage(0)

            ima = dict(interpolation='nearest', origin='lower',
                       vmin=-2.*sig1, vmax=5.*sig1, cmap='hot')

            this_dchisqs = []
            flux_sns = []
            
            for k in range(Nper):
                noise = np.random.normal(scale=sig1, size=true_mod.shape)
예제 #22
0
def galex_coadds(onegal,
                 galaxy=None,
                 radius_mosaic=30,
                 radius_mask=None,
                 pixscale=1.5,
                 ref_pixscale=0.262,
                 output_dir=None,
                 galex_dir=None,
                 log=None,
                 centrals=True,
                 verbose=False):
    '''Generate custom GALEX cutouts.
    
    radius_mosaic and radius_mask in arcsec
    
    pixscale: GALEX pixel scale in arcsec/pixel.

    '''
    import fitsio
    import matplotlib.pyplot as plt

    from astrometry.libkd.spherematch import match_radec
    from astrometry.util.resample import resample_with_wcs, OverlapError
    from tractor import (Tractor, NanoMaggies, Image, LinearPhotoCal,
                         NCircularGaussianPSF, ConstantFitsWcs, ConstantSky)

    from legacypipe.survey import imsave_jpeg
    from legacypipe.catalog import read_fits_catalog

    if galaxy is None:
        galaxy = 'galaxy'

    if galex_dir is None:
        galex_dir = os.environ.get('GALEX_DIR')

    if output_dir is None:
        output_dir = '.'

    if radius_mask is None:
        radius_mask = radius_mosaic
        radius_search = 5.0  # [arcsec]
    else:
        radius_search = radius_mask

    W = H = np.ceil(2 * radius_mosaic / pixscale).astype('int')  # [pixels]
    targetwcs = Tan(onegal['RA'], onegal['DEC'], (W + 1) / 2.0, (H + 1) / 2.0,
                    -pixscale / 3600.0, 0.0, 0.0, pixscale / 3600.0, float(W),
                    float(H))

    # Read the custom Tractor catalog
    tractorfile = os.path.join(output_dir, '{}-tractor.fits'.format(galaxy))
    if not os.path.isfile(tractorfile):
        print('Missing Tractor catalog {}'.format(tractorfile))
        return 0

    cat = fits_table(tractorfile)
    print('Read {} sources from {}'.format(len(cat), tractorfile),
          flush=True,
          file=log)

    keep = np.ones(len(cat)).astype(bool)
    if centrals:
        # Find the large central galaxy and mask out (ignore) all the models
        # which are within its elliptical mask.

        # This algorithm will have to change for mosaics not centered on large
        # galaxies, e.g., in galaxy groups.
        m1, m2, d12 = match_radec(cat.ra,
                                  cat.dec,
                                  onegal['RA'],
                                  onegal['DEC'],
                                  radius_search / 3600.0,
                                  nearest=False)
        if len(m1) == 0:
            print('No central galaxies found at the central coordinates!',
                  flush=True,
                  file=log)
        else:
            pixfactor = ref_pixscale / pixscale  # shift the optical Tractor positions
            for mm in m1:
                morphtype = cat.type[mm].strip()
                if morphtype == 'EXP' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapeexp_e1[mm], cat.shapeexp_e2[
                        mm], cat.shapeexp_r[mm]  # [arcsec]
                elif morphtype == 'DEV' or morphtype == 'COMP':
                    e1, e2, r50 = cat.shapedev_e1[mm], cat.shapedev_e2[
                        mm], cat.shapedev_r[mm]  # [arcsec]
                else:
                    r50 = None

                if r50:
                    majoraxis = r50 * 5 / pixscale  # [pixels]
                    ba, phi = SGA.misc.convert_tractor_e1e2(e1, e2)
                    these = SGA.misc.ellipse_mask(W / 2, W / 2, majoraxis,
                                                  ba * majoraxis,
                                                  np.radians(phi),
                                                  cat.bx * pixfactor,
                                                  cat.by * pixfactor)
                    if np.sum(these) > 0:
                        #keep[these] = False
                        pass
                print('Hack!')
                keep[mm] = False

            #srcs = read_fits_catalog(cat)
            #_srcs = np.array(srcs)[~keep].tolist()
            #mod = SGA.misc.srcs2image(_srcs, ConstantFitsWcs(targetwcs), psf_sigma=3.0)
            #import matplotlib.pyplot as plt
            ##plt.imshow(mod, origin='lower') ; plt.savefig('junk.png')
            #plt.imshow(np.log10(mod), origin='lower') ; plt.savefig('junk.png')
            #pdb.set_trace()

    srcs = read_fits_catalog(cat)
    for src in srcs:
        src.freezeAllBut('brightness')
    #srcs_nocentral = np.array(srcs)[keep].tolist()

    # Find all overlapping GALEX tiles and then read the tims.
    galex_tiles = _read_galex_tiles(targetwcs,
                                    galex_dir,
                                    log=log,
                                    verbose=verbose)

    gbands = ['n', 'f']
    nicegbands = ['NUV', 'FUV']

    zps = dict(n=20.08, f=18.82)

    coimgs, comods, coresids, coimgs_central, comods_nocentral = [], [], [], [], []
    for niceband, band in zip(nicegbands, gbands):
        J = np.flatnonzero(galex_tiles.get('has_' + band))
        print(len(J), 'GALEX tiles have coverage in band', band)

        coimg = np.zeros((H, W), np.float32)
        comod = np.zeros((H, W), np.float32)
        cowt = np.zeros((H, W), np.float32)

        comod_nocentral = np.zeros((H, W), np.float32)

        for src in srcs:
            src.setBrightness(NanoMaggies(**{band: 1}))

        for j in J:
            brick = galex_tiles[j]
            fn = os.path.join(
                galex_dir, brick.tilename.strip(),
                '%s-%sd-intbgsub.fits.gz' % (brick.brickname, band))
            #print(fn)

            gwcs = Tan(*[
                float(f) for f in [
                    brick.crval1, brick.crval2, brick.crpix1, brick.crpix2,
                    brick.cdelt1, 0., 0., brick.cdelt2, 3840., 3840.
                ]
            ])
            img = fitsio.read(fn)
            #print('Read', img.shape)

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(targetwcs, gwcs, [], 3)
            except OverlapError:
                continue

            K = np.flatnonzero(img[Yi, Xi] != 0.)
            if len(K) == 0:
                continue
            Yo, Xo, Yi, Xi = Yo[K], Xo[K], Yi[K], Xi[K]

            wt = brick.get(band + 'exptime')
            coimg[Yo, Xo] += wt * img[Yi, Xi]
            cowt[Yo, Xo] += wt

            x0, x1, y0, y1 = min(Xi), max(Xi), min(Yi), max(Yi)
            subwcs = gwcs.get_subimage(x0, y0, x1 - x0 + 1, y1 - y0 + 1)
            twcs = ConstantFitsWcs(subwcs)
            timg = img[y0:y1 + 1, x0:x1 + 1]

            tie = np.ones_like(timg)  ## HACK!
            #hdr = fitsio.read_header(fn)
            #zp = hdr['']
            zp = zps[band]
            photocal = LinearPhotoCal(NanoMaggies.zeropointToScale(zp),
                                      band=band)
            tsky = ConstantSky(0.0)

            # HACK -- circular Gaussian PSF of fixed size...
            # in arcsec
            #fwhms = dict(NUV=6.0, FUV=6.0)
            # -> sigma in pixels
            #sig = fwhms[band] / 2.35 / twcs.pixel_scale()
            sig = 6.0 / np.sqrt(8 * np.log(2)) / twcs.pixel_scale()
            tpsf = NCircularGaussianPSF([sig], [1.])

            tim = Image(data=timg,
                        inverr=tie,
                        psf=tpsf,
                        wcs=twcs,
                        sky=tsky,
                        photocal=photocal,
                        name='GALEX ' + band + brick.brickname)

            ## Build the model image with and without the central galaxy model.
            tractor = Tractor([tim], srcs)
            mod = tractor.getModelImage(0)
            tractor.freezeParam('images')
            tractor.optimize_forced_photometry(priors=False,
                                               shared_params=False)
            mod = tractor.getModelImage(0)

            srcs_nocentral = np.array(srcs)[keep].tolist()
            #srcs_nocentral = np.array(srcs)[nocentral].tolist()
            tractor_nocentral = Tractor([tim], srcs_nocentral)
            mod_nocentral = tractor_nocentral.getModelImage(0)

            comod[Yo, Xo] += wt * mod[Yi - y0, Xi - x0]
            comod_nocentral[Yo, Xo] += wt * mod_nocentral[Yi - y0, Xi - x0]

        coimg /= np.maximum(cowt, 1e-18)
        comod /= np.maximum(cowt, 1e-18)
        comod_nocentral /= np.maximum(cowt, 1e-18)

        coresid = coimg - comod

        # Subtract the model image which excludes the central (comod_nocentral)
        # from the data (coimg) to isolate the light of the central
        # (coimg_central).
        coimg_central = coimg - comod_nocentral

        coimgs.append(coimg)
        comods.append(comod)
        coresids.append(coresid)

        comods_nocentral.append(comod_nocentral)
        coimgs_central.append(coimg_central)

        # Write out the final images with and without the central, making sure
        # to apply the zeropoint to go from counts/s to AB nanomaggies.
        # https://asd.gsfc.nasa.gov/archive/galex/FAQ/counts_background.html
        for thisimg, imtype in zip((coimg, comod, comod_nocentral),
                                   ('image', 'model', 'model-nocentral')):
            fitsfile = os.path.join(
                output_dir, '{}-{}-{}.fits'.format(galaxy, imtype, niceband))
            if verbose:
                print('Writing {}'.format(fitsfile))
            fitsio.write(fitsfile,
                         thisimg * 10**(-0.4 * (zp - 22.5)),
                         clobber=True)

    # Build a color mosaic (but note that the images here are in units of
    # background-subtracted counts/s).

    #_galex_rgb = _galex_rgb_moustakas
    #_galex_rgb = _galex_rgb_dstn
    _galex_rgb = _galex_rgb_official

    for imgs, imtype in zip(
        (coimgs, comods, coresids, comods_nocentral, coimgs_central),
        ('image', 'model', 'resid', 'model-nocentral', 'image-central')):
        rgb = _galex_rgb(imgs)
        jpgfile = os.path.join(output_dir,
                               '{}-{}-FUVNUV.jpg'.format(galaxy, imtype))
        if verbose:
            print('Writing {}'.format(jpgfile))
        imsave_jpeg(jpgfile, rgb, origin='lower')

    return 1
예제 #23
0
def unwise_forcedphot(cat, tiles, bands=[1, 2, 3, 4], roiradecbox=None,
                      unwise_dir='.',
                      use_ceres=True, ceres_block=8,
                      save_fits=False, ps=None,
                      psf_broadening=None):
    '''
    Given a list of tractor sources *cat*
    and a list of unWISE tiles *tiles* (a fits_table with RA,Dec,coadd_id)
    runs forced photometry, returning a FITS table the same length as *cat*.
    '''

    # Severely limit sizes of models
    for src in cat:
        if isinstance(src, PointSource):
            src.fixedRadius = 10
        else:
            src.halfsize = 10

    wantims = ((ps is not None) or save_fits)
    wanyband = 'w'

    fskeys = ['prochi2', 'pronpix', 'profracflux', 'proflux', 'npix',
              'pronexp']

    Nsrcs = len(cat)
    phot = fits_table()
    phot.tile = np.array(['        '] * Nsrcs)

    ra = np.array([src.getPosition().ra for src in cat])
    dec = np.array([src.getPosition().dec for src in cat])

    for band in bands:
        print('Photometering WISE band', band)
        wband = 'w%i' % band

        # The tiles have some overlap, so for each source, keep the
        # fit in the tile whose center is closest to the source.
        tiledists = np.empty(Nsrcs)
        tiledists[:] = 1e100
        flux_invvars = np.zeros(Nsrcs, np.float32)
        fitstats = dict([(k, np.zeros(Nsrcs, np.float32)) for k in fskeys])
        nexp = np.zeros(Nsrcs, np.int16)
        mjd = np.zeros(Nsrcs, np.float64)

        for tile in tiles:
            print('Reading tile', tile.coadd_id)

            tim = get_unwise_tractor_image(unwise_dir, tile.coadd_id, band,
                                           bandname=wanyband, roiradecbox=roiradecbox)
            if tim is None:
                print('Actually, no overlap with tile', tile.coadd_id)
                continue

            if psf_broadening is not None:
                # psf_broadening is a factor by which the PSF FWHMs
                # should be scaled; the PSF is a little wider
                # post-reactivation.
                psf = tim.getPsf()
                from tractor import GaussianMixturePSF
                if isinstance(psf, GaussianMixturePSF):
                    #
                    print('Broadening PSF: from', psf)
                    p0 = psf.getParams()
                    #print('Params:', p0)
                    pnames = psf.getParamNames()
                    #print('Param names:', pnames)
                    p1 = [p * psf_broadening**2 if 'var' in name else p
                          for (p, name) in zip(p0, pnames)]
                    #print('Broadened:', p1)
                    psf.setParams(p1)
                    print('Broadened PSF:', psf)
                else:
                    print(
                        'WARNING: cannot apply psf_broadening to WISE PSF of type', type(psf))

            print('Read image with shape', tim.shape)

            # Select sources in play.
            wcs = tim.wcs.wcs
            H, W = tim.shape
            ok, x, y = wcs.radec2pixelxy(ra, dec)
            x = (x - 1.).astype(np.float32)
            y = (y - 1.).astype(np.float32)
            margin = 10.
            I = np.flatnonzero((x >= -margin) * (x < W + margin) *
                               (y >= -margin) * (y < H + margin))
            print(len(I), 'within the image + margin')

            inbox = ((x[I] >= -0.5) * (x[I] < (W - 0.5)) *
                     (y[I] >= -0.5) * (y[I] < (H - 0.5)))
            print(sum(inbox), 'strictly within the image')

            # Compute L_inf distance to (full) tile center.
            tilewcs = unwise_tile_wcs(tile.ra, tile.dec)
            cx, cy = tilewcs.crpix
            ok, tx, ty = tilewcs.radec2pixelxy(ra[I], dec[I])
            td = np.maximum(np.abs(tx - cx), np.abs(ty - cy))
            closest = (td < tiledists[I])
            tiledists[I[closest]] = td[closest]

            keep = inbox * closest

            # Source indices (in the full "cat") to keep (the fit values for)
            srci = I[keep]

            if not len(srci):
                print('No sources to be kept; skipping.')
                continue

            phot.tile[srci] = tile.coadd_id
            nexp[srci] = tim.nuims[np.clip(np.round(y[srci]).astype(int), 0, H - 1),
                                   np.clip(np.round(x[srci]).astype(int), 0, W - 1)]

            # Source indices in the margins
            margi = I[np.logical_not(keep)]

            # sources in the box -- at the start of the subcat list.
            subcat = [cat[i] for i in srci]

            # include *copies* of sources in the margins
            # (that way we automatically don't save the results)
            subcat.extend([cat[i].copy() for i in margi])
            assert(len(subcat) == len(I))

            # FIXME -- set source radii, ...?

            minsb = 0.
            fitsky = False

            # Look in image and set radius based on peak height??

            tractor = Tractor([tim], subcat)
            if use_ceres:
                from tractor.ceres_optimizer import CeresOptimizer
                tractor.optimizer = CeresOptimizer(BW=ceres_block,
                                                   BH=ceres_block)
            tractor.freezeParamsRecursive('*')
            tractor.thawPathsTo(wanyband)

            kwa = dict(fitstat_extras=[('pronexp', [tim.nims])])
            t0 = Time()

            R = tractor.optimize_forced_photometry(
                minsb=minsb, mindlnp=1., sky=fitsky, fitstats=True,
                variance=True, shared_params=False,
                wantims=wantims, **kwa)
            print('unWISE forced photometry took', Time() - t0)

            if use_ceres:
                term = R.ceres_status['termination']
                print('Ceres termination status:', term)
                # Running out of memory can cause failure to converge
                # and term status = 2.
                # Fail completely in this case.
                if term != 0:
                    raise RuntimeError(
                        'Ceres terminated with status %i' % term)

            if wantims:
                ims0 = R.ims0
                ims1 = R.ims1
            IV, fs = R.IV, R.fitstats

            if save_fits:
                import fitsio
                (dat, mod, ie, chi, roi) = ims1[0]
                wcshdr = fitsio.FITSHDR()
                tim.wcs.wcs.add_to_header(wcshdr)

                tag = 'fit-%s-w%i' % (tile.coadd_id, band)
                fitsio.write('%s-data.fits' %
                             tag, dat, clobber=True, header=wcshdr)
                fitsio.write('%s-mod.fits' % tag,  mod,
                             clobber=True, header=wcshdr)
                fitsio.write('%s-chi.fits' % tag,  chi,
                             clobber=True, header=wcshdr)

            if ps:
                tag = '%s W%i' % (tile.coadd_id, band)
                (dat, mod, ie, chi, roi) = ims1[0]

                sig1 = tim.sig1
                plt.clf()
                plt.imshow(dat, interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
                plt.colorbar()
                plt.title('%s: data' % tag)
                ps.savefig()

                plt.clf()
                plt.imshow(mod, interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
                plt.colorbar()
                plt.title('%s: model' % tag)
                ps.savefig()

                plt.clf()
                plt.imshow(chi, interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-5, vmax=+5)
                plt.colorbar()
                plt.title('%s: chi' % tag)
                ps.savefig()

            # Save results for this tile.
            # the "keep" sources are at the beginning of the "subcat" list
            flux_invvars[srci] = IV[:len(srci)].astype(np.float32)
            if hasattr(tim, 'mjdmin') and hasattr(tim, 'mjdmax'):
                mjd[srci] = (tim.mjdmin + tim.mjdmax) / 2.
            if fs is None:
                continue
            for k in fskeys:
                x = getattr(fs, k)
                # fitstats are returned only for un-frozen sources
                fitstats[k][srci] = np.array(x).astype(np.float32)[:len(srci)]

        # Note, this is *outside* the loop over tiles.
        # The fluxes are saved in the source objects, and will be set based on
        # the 'tiledists' logic above.
        nm = np.array([src.getBrightness().getBand(wanyband) for src in cat])
        nm_ivar = flux_invvars

        # Sources out of bounds, eg, never change from their default
        # (1-sigma or whatever) initial fluxes.  Zero them out instead.
        nm[nm_ivar == 0] = 0.

        phot.set(wband + '_nanomaggies', nm.astype(np.float32))
        phot.set(wband + '_nanomaggies_ivar', nm_ivar)
        dnm = np.zeros(len(nm_ivar), np.float32)
        okiv = (nm_ivar > 0)
        dnm[okiv] = (1. / np.sqrt(nm_ivar[okiv])).astype(np.float32)
        okflux = (nm > 0)
        mag = np.zeros(len(nm), np.float32)
        mag[okflux] = (NanoMaggies.nanomaggiesToMag(nm[okflux])
                       ).astype(np.float32)
        dmag = np.zeros(len(nm), np.float32)
        ok = (okiv * okflux)
        dmag[ok] = (np.abs((-2.5 / np.log(10.)) * dnm[ok] / nm[ok])
                    ).astype(np.float32)
        mag[np.logical_not(okflux)] = np.nan
        dmag[np.logical_not(ok)] = np.nan

        phot.set(wband + '_mag', mag)
        phot.set(wband + '_mag_err', dmag)
        for k in fskeys:
            phot.set(wband + '_' + k, fitstats[k])
        phot.set(wband + '_nexp', nexp)

        if not np.all(mjd == 0):
            phot.set(wband + '_mjd', mjd)

    return phot
예제 #24
0
        comods = []

        srcs = read_fits_catalog(T)
        for src in srcs:
            src.freezeAllBut('brightness')

        for band in gbands:
            J = np.flatnonzero(galex.get('has_' + band))
            print(len(J), 'GALEX tiles have coverage in band', band)

            coimg = np.zeros((H, W), np.float32)
            comod = np.zeros((H, W), np.float32)
            cowt = np.zeros((H, W), np.float32)

            for src in srcs:
                src.setBrightness(NanoMaggies(**{band: 1}))

            for j in J:
                brick = galex[j]
                fn = os.path.join(
                    opt.galex_dir, brick.tilename.strip(),
                    '%s-%sd-intbgsub.fits.gz' % (brick.brickname, band))
                print(fn)

                gwcs = Tan(*[
                    float(f) for f in [
                        brick.crval1, brick.crval2, brick.crpix1, brick.crpix2,
                        brick.cdelt1, 0., 0., brick.cdelt2, 3840., 3840.
                    ]
                ])
                img = fitsio.read(fn)
예제 #25
0
def main():
    # Where are the data?
    datadir = os.path.join(os.path.dirname(__file__), 'data-decam')
    name = 'decam-520206-S16'
    imagefn = os.path.join(datadir, '%s-image-sub.fits' % name)
    invvarfn = os.path.join(datadir, '%s-invvar-sub.fits' % name)
    psfexfn = os.path.join(datadir, '%s-psfex.fits' % name)
    catfn = os.path.join(datadir, 'tractor-1816p325-sub.fits')

    # Read the image and inverse-variance maps.
    image = fitsio.read(imagefn)
    invvar = fitsio.read(invvarfn)
    # The DECam inverse-variance maps are unfortunately corrupted
    # by fpack, causing zeros to become negative.  Fix those.
    invvar[invvar < np.median(invvar) * 0.1] = 0.
    H, W = image.shape
    print('Subimage size:', image.shape)

    # For the PSF model, we need to know what subimage region this is:
    subimage_offset = (35, 1465)
    # We also need the calibrated zeropoint.
    zeropoint = 24.7787

    # What filter was this image taken in?  (z)
    prim_header = fitsio.read_header(imagefn)
    band = prim_header['FILTER'].strip()[0]
    print('Band:', band)
    # These DECam images were calibrated so that the zeropoints need
    # an exposure-time factor, so add that in.
    exptime = prim_header['EXPTIME']
    zeropoint += 2.5 * np.log10(exptime)

    # Read the PsfEx model file
    psf = PixelizedPsfEx(psfexfn)
    # Instantiate a constant pixelized PSF at the image center
    # (of the subimage)
    x0, y0 = subimage_offset
    psf = psf.constantPsfAt(x0 + W / 2., y0 + H / 2.)

    # Load the WCS model from the header
    # We convert from the RA---TPV type to RA---SIP
    header = fitsio.read_header(imagefn, ext=1)
    wcsobj = wcs_pv2sip_hdr(header, stepsize=10)

    # We'll just use a rough sky estimate...
    skyval = np.median(image)

    # Create the Tractor Image (tim).
    tim = Image(data=image,
                invvar=invvar,
                psf=psf,
                wcs=ConstantFitsWcs(wcsobj),
                sky=ConstantSky(skyval),
                photocal=LinearPhotoCal(
                    NanoMaggies.zeropointToScale(zeropoint), band=band))

    # Read the official DECaLS DR3 catalog -- it has only two sources in this subimage.
    catalog = fits_table(catfn)
    print('Read', len(catalog), 'sources')
    print('Source types:', catalog.type)

    # Create Tractor sources corresponding to these two catalog
    # entries.

    # In DECaLS, the "SIMP" type is a round Exponential galaxy with a
    # fixed 0.45" radius, but we'll treat it as a general Exp galaxy.

    sources = []
    for c in catalog:
        # Create a "position" object given the catalog RA,Dec
        position = RaDecPos(c.ra, c.dec)
        # Create a "brightness" object; in the catalog, the fluxes are
        # stored in a [ugrizY] array, so pull out the right index
        band_index = 'ugrizY'.index(band)
        flux = c.decam_flux[band_index]
        brightness = NanoMaggies(**{band: flux})

        # Depending on the source classification in the catalog, pull
        # out different fields for the galaxy shape, and for the
        # galaxy type.  The DECaLS catalogs, conveniently, store
        # galaxy shapes as (radius, e1, e2) ellipses.
        if c.type.strip() == 'DEV':
            shape = EllipseE(c.shapedev_r, c.shapedev_e1, c.shapedev_e2)
            galclass = DevGalaxy
        elif c.type.strip() == 'SIMP':
            shape = EllipseE(c.shapeexp_r, c.shapeexp_e1, c.shapeexp_e2)
            galclass = ExpGalaxy
        else:
            assert (False)
        # Create the tractor galaxy object
        source = galclass(position, brightness, shape)
        print('Created', source)
        sources.append(source)

    # Create the Tractor object -- a list of tractor Images and a list of tractor sources.
    tractor = Tractor([tim], sources)

    # Render the initial model image.
    print('Getting initial model...')
    mod = tractor.getModelImage(0)
    make_plot(tim, mod, 'Initial Scene', 'mod0.png')

    # Instantiate a new source at the location of the unmodelled peak.
    print('Adding new source...')
    # Find the peak very naively...
    ipeak = np.argmax((image - mod) * tim.inverr)
    iy, ix = np.unravel_index(ipeak, tim.shape)
    print('Residual peak at', ix, iy)
    # Compute the RA,Dec location of the peak...
    radec = tim.getWcs().pixelToPosition(ix, iy)
    print('RA,Dec', radec)

    # Try modelling it as a point source.
    # We'll initialize the brightness arbitrarily to 1 nanomaggy (= mag 22.5)
    brightness = NanoMaggies(**{band: 1.})
    source = PointSource(radec, brightness)

    # Add it to the catalog!
    tractor.catalog.append(source)

    # Render the new model image with this source added.
    mod = tractor.getModelImage(0)
    make_plot(tim, mod, 'New Source (Before Fit)', 'mod1.png')

    print('Fitting new source...')
    # Now we're going to fit for the properties of the new source we
    # added.
    # We don't want to fit for any of the image calibration properties:
    tractor.freezeParam('images')
    # And we don't (yet) want to fit the existing sources.  The new
    # source is index number 2, so freeze everything else in the catalog.
    tractor.catalog.freezeAllBut(2)

    print('Fitting parameters:')
    tractor.printThawedParams()

    # Do the actual optimization:
    tractor.optimize_loop()

    mod = tractor.getModelImage(0)
    make_plot(tim, mod, 'New Source Fit', 'mod2.png')

    print('Fitting sources simultaneously...')
    # Now let's unfreeze all the sources and fit them simultaneously.
    tractor.catalog.thawAllParams()
    tractor.printThawedParams()

    tractor.optimize_loop()

    mod = tractor.getModelImage(0)
    make_plot(tim, mod, 'Simultaneous Fit', 'mod3.png')
예제 #26
0
def wise_cutouts(ra,
                 dec,
                 radius,
                 ps,
                 pixscale=2.75,
                 survey_dir=None,
                 unwise_dir=None):
    '''
    radius in arcsec.
    pixscale: WISE pixel scale in arcsec/pixel;
        make this smaller than 2.75 to oversample.
    '''

    if unwise_dir is None:
        unwise_dir = os.environ.get('UNWISE_COADDS_DIR')

    npix = int(np.ceil(radius / pixscale))
    print('Image size:', npix)
    W = H = npix
    pix = pixscale / 3600.
    wcs = Tan(ra, dec, (W + 1) / 2., (H + 1) / 2., -pix, 0., 0., pix, float(W),
              float(H))
    # Find DECaLS bricks overlapping
    survey = LegacySurveyData(survey_dir=survey_dir)
    B = bricks_touching_wcs(wcs, survey=survey)
    print('Found', len(B), 'bricks overlapping')

    TT = []
    for b in B.brickname:
        fn = survey.find_file('tractor', brick=b)
        T = fits_table(fn)
        print('Read', len(T), 'from', b)
        primhdr = fitsio.read_header(fn)
        TT.append(T)
    T = merge_tables(TT)
    print('Total of', len(T), 'sources')
    T.cut(T.brick_primary)
    print(len(T), 'primary')
    margin = 20
    ok, xx, yy = wcs.radec2pixelxy(T.ra, T.dec)
    I = np.flatnonzero((xx > -margin) * (yy > -margin) * (xx < W + margin) *
                       (yy < H + margin))
    T.cut(I)
    print(len(T), 'within ROI')

    #return wcs,T

    # Pull out DECaLS coadds (image, model, resid).
    dwcs = wcs.scale(2. * pixscale / 0.262)
    dh, dw = dwcs.shape
    print('DECaLS resampled shape:', dh, dw)
    tags = ['image', 'model', 'resid']
    coimgs = [np.zeros((dh, dw, 3), np.uint8) for t in tags]

    for b in B.brickname:
        fn = survey.find_file('image', brick=b, band='r')
        bwcs = Tan(fn, 1)  # ext 1: .fz
        try:
            Yo, Xo, Yi, Xi, nil = resample_with_wcs(dwcs, bwcs)
        except ResampleError:
            continue
        if len(Yo) == 0:
            continue
        print('Resampling', len(Yo), 'pixels from', b)
        xl, xh, yl, yh = Xi.min(), Xi.max(), Yi.min(), Yi.max()
        #print('python legacypipe/runbrick.py -b %s --zoom %i %i %i %i --outdir cluster --pixpsf --splinesky --pipe --no-early-coadds' %
        #      (b, xl-5, xh+5, yl-5, yh+5) + ' -P \'pickles/cluster-%(brick)s-%%(stage)s.pickle\'')
        for i, tag in enumerate(tags):
            fn = survey.find_file(tag + '-jpeg', brick=b)
            img = plt.imread(fn)
            img = np.flipud(img)
            coimgs[i][Yo, Xo, :] = img[Yi, Xi, :]

    tt = dict(image='Image', model='Model', resid='Resid')
    for img, tag in zip(coimgs, tags):
        plt.clf()
        dimshow(img, ticks=False)
        plt.title('DECaLS grz %s' % tt[tag])
        ps.savefig()

    # Find unWISE tiles overlapping
    tiles = unwise_tiles_touching_wcs(wcs)
    print('Cut to', len(tiles), 'unWISE tiles')

    # Here we assume the targetwcs is axis-aligned and that the
    # edge midpoints yield the RA,Dec limits (true for TAN).
    r, d = wcs.pixelxy2radec(np.array([1, W, W / 2, W / 2]),
                             np.array([H / 2, H / 2, 1, H]))
    # the way the roiradec box is used, the min/max order doesn't matter
    roiradec = [r[0], r[1], d[2], d[3]]

    ra, dec = T.ra, T.dec

    srcs = read_fits_catalog(T)

    wbands = [1, 2, 3, 4]
    wanyband = 'w'

    for band in wbands:
        f = T.get('flux_w%i' % band)
        f *= 10.**(primhdr['WISEAB%i' % band] / 2.5)

    coimgs = [np.zeros((H, W), np.float32) for b in wbands]
    comods = [np.zeros((H, W), np.float32) for b in wbands]
    con = [np.zeros((H, W), np.uint8) for b in wbands]

    for iband, band in enumerate(wbands):
        print('Photometering WISE band', band)
        wband = 'w%i' % band

        for i, src in enumerate(srcs):
            #print('Source', src, 'brightness', src.getBrightness(), 'params', src.getBrightness().getParams())
            #src.getBrightness().setParams([T.wise_flux[i, band-1]])
            src.setBrightness(
                NanoMaggies(**{wanyband: T.get('flux_w%i' % band)[i]}))
            # print('Set source brightness:', src.getBrightness())

        # The tiles have some overlap, so for each source, keep the
        # fit in the tile whose center is closest to the source.
        for tile in tiles:
            print('Reading tile', tile.coadd_id)

            tim = get_unwise_tractor_image(unwise_dir,
                                           tile.coadd_id,
                                           band,
                                           bandname=wanyband,
                                           roiradecbox=roiradec)
            if tim is None:
                print('Actually, no overlap with tile', tile.coadd_id)
                continue
            print('Read image with shape', tim.shape)

            # Select sources in play.
            wisewcs = tim.wcs.wcs
            H, W = tim.shape
            ok, x, y = wisewcs.radec2pixelxy(ra, dec)
            x = (x - 1.).astype(np.float32)
            y = (y - 1.).astype(np.float32)
            margin = 10.
            I = np.flatnonzero((x >= -margin) * (x < W + margin) *
                               (y >= -margin) * (y < H + margin))
            print(len(I), 'within the image + margin')

            subcat = [srcs[i] for i in I]
            tractor = Tractor([tim], subcat)
            mod = tractor.getModelImage(0)

            # plt.clf()
            # dimshow(tim.getImage(), ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            # plt.clf()
            # dimshow(mod, ticks=False)
            # plt.title('WISE %s %s' % (tile.coadd_id, wband))
            # ps.savefig()

            try:
                Yo, Xo, Yi, Xi, nil = resample_with_wcs(wcs, tim.wcs.wcs)
            except ResampleError:
                continue
            if len(Yo) == 0:
                continue
            print('Resampling', len(Yo), 'pixels from WISE', tile.coadd_id,
                  band)

            coimgs[iband][Yo, Xo] += tim.getImage()[Yi, Xi]
            comods[iband][Yo, Xo] += mod[Yi, Xi]
            con[iband][Yo, Xo] += 1

    for img, mod, n in zip(coimgs, comods, con):
        img /= np.maximum(n, 1)
        mod /= np.maximum(n, 1)

    for band, img, mod in zip(wbands, coimgs, comods):
        lo, hi = np.percentile(img, [25, 99])
        plt.clf()
        dimshow(img, vmin=lo, vmax=hi, ticks=False)
        plt.title('WISE W%i Data' % band)
        ps.savefig()

        plt.clf()
        dimshow(mod, vmin=lo, vmax=hi, ticks=False)
        plt.title('WISE W%i Model' % band)
        ps.savefig()

        resid = img - mod
        mx = np.abs(resid).max()
        plt.clf()
        dimshow(resid, vmin=-mx, vmax=mx, ticks=False)
        plt.title('WISE W%i Resid' % band)
        ps.savefig()

    #kwa = dict(mn=-0.1, mx=2., arcsinh = 1.)
    kwa = dict(mn=-0.1, mx=2., arcsinh=None)
    rgb = _unwise_to_rgb(coimgs[:2], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Data')
    ps.savefig()

    rgb = _unwise_to_rgb(comods[:2], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Model')
    ps.savefig()

    kwa = dict(mn=-1, mx=1, arcsinh=None)
    rgb = _unwise_to_rgb(
        [img - mod for img, mod in list(zip(coimgs, comods))[:2]], **kwa)
    plt.clf()
    dimshow(rgb, ticks=False)
    plt.title('WISE W1/W2 Resid')
    ps.savefig()

    return wcs, T
예제 #27
0
def read_fits_catalog(T,
                      hdr=None,
                      invvars=False,
                      bands='grz',
                      allbands=None,
                      ellipseClass=EllipseE,
                      unpackShape=True,
                      fluxPrefix=''):
    '''
    This is currently a weird hybrid of dynamic and hard-coded.

    Return list of tractor Sources.

    If invvars=True, return sources,invvars
    where invvars is a list matching sources.getParams()

    If *ellipseClass* is set, assume that type for galaxy shapes; if None,
    read the type from the header.

    If *unpackShapes* is True and *ellipseClass* is EllipseE, read
    catalog entries "shapeexp_r", "shapeexp_e1", "shapeexp_e2" rather than
    "shapeExp", and similarly for "dev".
    '''
    from tractor import NanoMaggies
    if hdr is None:
        hdr = T._header
    if allbands is None:
        allbands = bands
    rev_typemap = fits_reverse_typemap

    if unpackShape and ellipseClass != EllipseE:
        print('Not doing unpackShape because ellipseClass != EllipseE.')
        unpackShape = False
    if unpackShape:
        T.shapeexp = np.vstack((T.shapeexp_r, T.shapeexp_e1, T.shapeexp_e2)).T
        T.shapedev = np.vstack((T.shapedev_r, T.shapedev_e1, T.shapedev_e2)).T

    ibands = np.array([allbands.index(b) for b in bands])

    ivs = []
    cat = []
    for t in T:
        clazz = rev_typemap[t.type.strip()]
        pos = RaDecPos(t.ra, t.dec)
        assert (np.isfinite(t.ra))
        assert (np.isfinite(t.dec))

        shorttype = fits_short_typemap[clazz]

        if fluxPrefix + 'flux' in t.get_columns():
            flux = np.atleast_1d(t.get(fluxPrefix + 'flux'))
            assert (np.all(np.isfinite(flux[ibands])))
            br = NanoMaggies(order=bands, **dict(zip(bands, flux[ibands])))
        else:
            fluxes = {}
            for b in bands:
                fluxes[b] = t.get(fluxPrefix + 'flux_' + b)
                assert (np.all(np.isfinite(fluxes[b])))
            br = NanoMaggies(order=bands, **fluxes)

        params = [pos, br]
        if invvars:
            # ASSUME & hard-code that the position and brightness are
            # the first params

            if fluxPrefix + 'flux_ivar' in t.get_columns():
                fluxiv = np.atleast_1d(t.get(fluxPrefix + 'flux_ivar'))
                fluxivs = list(fluxiv[ibands])
            else:
                fluxivs = []
                for b in bands:
                    fluxivs.append(t.get(fluxPrefix + 'flux_ivar_' + b))
            ivs.extend([t.ra_ivar, t.dec_ivar] + fluxivs)

        if issubclass(clazz, (DevGalaxy, ExpGalaxy)):
            if ellipseClass is not None:
                eclazz = ellipseClass
            else:
                # hard-code knowledge that third param is the ellipse
                eclazz = hdr['TR_%s_T3' % shorttype]
                # drop any double-quoted weirdness
                eclazz = eclazz.replace('"', '')
                # look up that string... to avoid eval()
                eclazz = ellipse_types[eclazz]

            if issubclass(clazz, DevGalaxy):
                assert (np.all([np.isfinite(x) for x in t.shapedev]))
                ell = eclazz(*t.shapedev)
            else:
                assert (np.all([np.isfinite(x) for x in t.shapeexp]))
                ell = eclazz(*t.shapeexp)
            params.append(ell)
            if invvars:
                if issubclass(clazz, DevGalaxy):
                    ivs.extend(t.shapedev_ivar)
                else:
                    ivs.extend(t.shapeexp_ivar)

        elif issubclass(clazz, FixedCompositeGalaxy):
            # hard-code knowledge that params are fracDev, shapeE, shapeD
            assert (np.isfinite(t.fracdev))
            params.append(t.fracdev)
            if ellipseClass is not None:
                expeclazz = deveclazz = ellipseClass
            else:
                expeclazz = hdr['TR_%s_T4' % shorttype]
                deveclazz = hdr['TR_%s_T5' % shorttype]
                expeclazz = expeclazz.replace('"', '')
                deveclazz = deveclazz.replace('"', '')
                expeclazz = ellipse_types[expeclazz]
                deveclazz = ellipse_types[deveclazz]
            assert (np.all([np.isfinite(x) for x in t.shapedev]))
            assert (np.all([np.isfinite(x) for x in t.shapeexp]))
            ee = expeclazz(*t.shapeexp)
            de = deveclazz(*t.shapedev)
            params.append(ee)
            params.append(de)

            if invvars:
                ivs.append(t.fracdev_ivar)
                ivs.extend(t.shapeexp_ivar)
                ivs.extend(t.shapedev_ivar)

        elif issubclass(clazz, PointSource):
            pass
        else:
            raise RuntimeError('Unknown class %s' % str(clazz))

        src = clazz(*params)
        cat.append(src)

    if invvars:
        ivs = np.array(ivs)
        ivs[np.logical_not(np.isfinite(ivs))] = 0
        return cat, ivs
    return cat
예제 #28
0
def unwise_forcedphot(cat, tiles, band=1, roiradecbox=None,
                      use_ceres=True, ceres_block=8,
                      save_fits=False, get_models=False, ps=None,
                      psf_broadening=None,
                      pixelized_psf=False,
                      get_masks=None,
                      move_crpix=False,
                      modelsky_dir=None):
    '''
    Given a list of tractor sources *cat*
    and a list of unWISE tiles *tiles* (a fits_table with RA,Dec,coadd_id)
    runs forced photometry, returning a FITS table the same length as *cat*.

    *get_masks*: the WCS to resample mask bits into.
    '''
    from tractor import NanoMaggies, PointSource, Tractor, ExpGalaxy, DevGalaxy, FixedCompositeGalaxy

    if not pixelized_psf and psf_broadening is None:
        # PSF broadening in post-reactivation data, by band.
        # Newer version from Aaron's email to decam-chatter, 2018-06-14.
        broadening = { 1: 1.0405, 2: 1.0346, 3: None, 4: None }
        psf_broadening = broadening[band]

    if False:
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence('wise-forced-w%i' % band)
    plots = (ps is not None)
    if plots:
        import pylab as plt
    
    wantims = (plots or save_fits or get_models)
    wanyband = 'w'
    if get_models:
        models = {}

    wband = 'w%i' % band

    fskeys = ['prochi2', 'pronpix', 'profracflux', 'proflux', 'npix',
              'pronexp']

    Nsrcs = len(cat)
    phot = fits_table()
    # Filled in based on unique tile overlap
    phot.wise_coadd_id = np.array(['        '] * Nsrcs)
    phot.set(wband + '_psfdepth', np.zeros(len(phot), np.float32))

    ra  = np.array([src.getPosition().ra  for src in cat])
    dec = np.array([src.getPosition().dec for src in cat])

    nexp = np.zeros(Nsrcs, np.int16)
    mjd  = np.zeros(Nsrcs, np.float64)
    central_flux = np.zeros(Nsrcs, np.float32)

    fitstats = {}
    tims = []

    if get_masks:
        mh,mw = get_masks.shape
        maskmap = np.zeros((mh,mw), np.uint32)
    
    for tile in tiles:
        print('Reading WISE tile', tile.coadd_id, 'band', band)

        tim = get_unwise_tractor_image(tile.unwise_dir, tile.coadd_id, band,
                                       bandname=wanyband, roiradecbox=roiradecbox)
        if tim is None:
            print('Actually, no overlap with tile', tile.coadd_id)
            continue

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage(), interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data' % tag)
            ps.savefig()

            plt.clf()
            plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                     range=(-5,10), bins=100)
            plt.xlabel('Per-pixel intensity (Sigma)')
            plt.title(tag)
            ps.savefig()

        if move_crpix and band in [1, 2]:
            realwcs = tim.wcs.wcs
            x,y = realwcs.crpix
            tile_crpix = tile.get('crpix_w%i' % band)
            dx = tile_crpix[0] - 1024.5
            dy = tile_crpix[1] - 1024.5
            realwcs.set_crpix(x+dx, y+dy)
            #print('CRPIX', x,y, 'shift by', dx,dy, 'to', realwcs.crpix)

        if modelsky_dir and band in [1, 2]:
            fn = os.path.join(modelsky_dir, '%s.%i.mod.fits' % (tile.coadd_id, band))
            if not os.path.exists(fn):
                raise RuntimeError('WARNING: does not exist:', fn)
            x0,x1,y0,y1 = tim.roi
            bg = fitsio.FITS(fn)[2][y0:y1, x0:x1]
            #print('Read background map:', bg.shape, bg.dtype, 'vs image', tim.shape)

            if plots:
                plt.clf()
                plt.subplot(1,2,1)
                plt.imshow(tim.getImage(), interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=5 * sig1)
                plt.subplot(1,2,2)
                plt.imshow(bg, interpolation='nearest', origin='lower',
                           cmap='gray', vmin=-3 * sig1, vmax=5 * sig1)
                tag = '%s W%i' % (tile.coadd_id, band)
                plt.suptitle(tag)
                ps.savefig()

                plt.clf()
                ha = dict(range=(-5,10), bins=100, histtype='step')
                plt.hist((tim.getImage() * tim.inverr)[tim.inverr > 0].ravel(),
                         color='b', label='Original', **ha)
                plt.hist(((tim.getImage()-bg) * tim.inverr)[tim.inverr > 0].ravel(),
                         color='g', label='Minus Background', **ha)
                plt.axvline(0, color='k', alpha=0.5)
                plt.xlabel('Per-pixel intensity (Sigma)')
                plt.legend()
                plt.title(tag + ': background')
                ps.savefig()

            # Actually subtract the background!
            tim.data -= bg

        # Floor the per-pixel variances
        if band in [1,2]:
            # in Vega nanomaggies per pixel
            floor_sigma = {1: 0.5, 2: 2.0}
            with np.errstate(divide='ignore'):
                new_ie = 1. / np.hypot(1./tim.inverr, floor_sigma[band])
            new_ie[tim.inverr == 0] = 0.

            if plots:
                plt.clf()
                plt.plot((1. / tim.inverr[tim.inverr>0]).ravel(), (1./new_ie[tim.inverr>0]).ravel(), 'b.')
                plt.title('unWISE per-pixel error: %s band %i' % (tile.coadd_id, band))
                plt.xlabel('original')
                plt.ylabel('floored')
                ps.savefig()

            tim.inverr = new_ie

        # Read mask file?
        if get_masks:
            from astrometry.util.resample import resample_with_wcs, OverlapError
            # unwise_dir can be a colon-separated list of paths
            tilemask = None
            for d in tile.unwise_dir.split(':'):
                fn = os.path.join(d, tile.coadd_id[:3], tile.coadd_id,
                                  'unwise-%s-msk.fits.gz' % tile.coadd_id)
                if os.path.exists(fn):
                    print('Reading unWISE mask file', fn)
                    x0,x1,y0,y1 = tim.roi
                    tilemask = fitsio.FITS(fn)[0][y0:y1,x0:x1]
                    break
            if tilemask is None:
                print('unWISE mask file for tile', tile.coadd_id, 'does not exist')
            else:
                try:
                    tanwcs = tim.wcs.wcs
                    assert(tanwcs.shape == tilemask.shape)
                    Yo,Xo,Yi,Xi,_ = resample_with_wcs(get_masks, tanwcs, intType=np.int16)
                    # Only deal with mask pixels that are set.
                    I, = np.nonzero(tilemask[Yi,Xi] > 0)
                    # Trim to unique area for this tile
                    rr,dd = get_masks.pixelxy2radec(Yo[I]+1, Xo[I]+1)
                    good = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
                    I = I[good]
                    maskmap[Yo[I],Xo[I]] = tilemask[Yi[I], Xi[I]]
                except OverlapError:
                    # Shouldn't happen by this point
                    print('No overlap between WISE tile', tile.coadd_id, 'and brick')

        # The tiles have some overlap, so zero out pixels outside the
        # tile's unique area.
        th,tw = tim.shape
        xx,yy = np.meshgrid(np.arange(tw), np.arange(th))
        rr,dd = tim.wcs.wcs.pixelxy2radec(xx+1, yy+1)
        unique = radec_in_unique_area(rr, dd, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
        #print(np.sum(unique), 'of', (th*tw), 'pixels in this tile are unique')
        tim.inverr[unique == False] = 0.
        del xx,yy,rr,dd,unique

        if plots:
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(tim.getImage() * (tim.inverr > 0),
                       interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=10 * sig1)
            plt.colorbar()
            tag = '%s W%i' % (tile.coadd_id, band)
            plt.title('%s: tim data (unique)' % tag)
            ps.savefig()

        if pixelized_psf:
            import unwise_psf
            if (band == 1) or (band == 2):
                # we only have updated PSFs for W1 and W2
                psfimg = unwise_psf.get_unwise_psf(band, tile.coadd_id, 
                                                   modelname='neo4_unwisecat')
            else:
                psfimg = unwise_psf.get_unwise_psf(band, tile.coadd_id)

            if band == 4:
                # oversample (the unwise_psf models are at native W4 5.5"/pix,
                # while the unWISE coadds are made at 2.75"/pix.
                ph,pw = psfimg.shape
                subpsf = np.zeros((ph*2-1, pw*2-1), np.float32)
                from astrometry.util.util import lanczos3_interpolate
                xx,yy = np.meshgrid(np.arange(0., pw-0.51, 0.5, dtype=np.float32),
                                    np.arange(0., ph-0.51, 0.5, dtype=np.float32))
                xx = xx.ravel()
                yy = yy.ravel()
                ix = xx.astype(np.int32)
                iy = yy.astype(np.int32)
                dx = (xx - ix).astype(np.float32)
                dy = (yy - iy).astype(np.float32)
                psfimg = psfimg.astype(np.float32)
                rtn = lanczos3_interpolate(ix, iy, dx, dy, [subpsf.flat], [psfimg])

                if plots:
                    plt.clf()
                    plt.imshow(psfimg, interpolation='nearest', origin='lower')
                    plt.title('Original PSF model')
                    ps.savefig()
                    plt.clf()
                    plt.imshow(subpsf, interpolation='nearest', origin='lower')
                    plt.title('Subsampled PSF model')
                    ps.savefig()

                psfimg = subpsf
                del xx, yy, ix, iy, dx, dy

            from tractor.psf import PixelizedPSF
            psfimg /= psfimg.sum()
            fluxrescales = {1: 1.04, 2: 1.005, 3: 1.0, 4: 1.0}
            psfimg *= fluxrescales[band]
            tim.psf = PixelizedPSF(psfimg)

        if psf_broadening is not None and not pixelized_psf:
            # psf_broadening is a factor by which the PSF FWHMs
            # should be scaled; the PSF is a little wider
            # post-reactivation.
            psf = tim.getPsf()
            from tractor import GaussianMixturePSF
            if isinstance(psf, GaussianMixturePSF):
                #
                print('Broadening PSF: from', psf)
                p0 = psf.getParams()
                pnames = psf.getParamNames()
                p1 = [p * psf_broadening**2 if 'var' in name else p
                      for (p, name) in zip(p0, pnames)]
                psf.setParams(p1)
                print('Broadened PSF:', psf)
            else:
                print('WARNING: cannot apply psf_broadening to WISE PSF of type', type(psf))

        wcs = tim.wcs.wcs
        ok,x,y = wcs.radec2pixelxy(ra, dec)
        x = np.round(x - 1.).astype(int)
        y = np.round(y - 1.).astype(int)
        good = (x >= 0) * (x < tw) * (y >= 0) * (y < th)
        # Which sources are in this brick's unique area?
        usrc = radec_in_unique_area(ra, dec, tile.ra1, tile.ra2, tile.dec1, tile.dec2)
        I, = np.nonzero(good * usrc)

        nexp[I] = tim.nuims[y[I], x[I]]
        if hasattr(tim, 'mjdmin') and hasattr(tim, 'mjdmax'):
            mjd[I] = (tim.mjdmin + tim.mjdmax) / 2.
        phot.wise_coadd_id[I] = tile.coadd_id

        central_flux[I] = tim.getImage()[y[I], x[I]]
        del x,y,good,usrc

        # PSF norm for depth
        psf = tim.getPsf()
        h,w = tim.shape
        patch = psf.getPointSourcePatch(h//2, w//2).patch
        psfnorm = np.sqrt(np.sum(patch**2))
        # To handle zero-depth, we return 1/nanomaggies^2 units rather than mags.
        psfdepth = 1. / (tim.sig1 / psfnorm)**2
        phot.get(wband + '_psfdepth')[I] = psfdepth

        tim.tile = tile
        tims.append(tim)

    if plots:
        plt.clf()
        mn,mx = 0.1, 20000
        plt.hist(np.log10(np.clip(central_flux, mn, mx)), bins=100,
                 range=(np.log10(mn), np.log10(mx)))
        logt = np.arange(0, 5)
        plt.xticks(logt, ['%i' % i for i in 10.**logt])
        plt.title('Central fluxes (W%i)' % band)
        plt.axvline(np.log10(20000), color='k')
        plt.axvline(np.log10(1000), color='k')
        ps.savefig()

    # Eddie's non-secret recipe:
    #- central pixel <= 1000: 19x19 pix box size
    #- central pixel in 1000 - 20000: 59x59 box size
    #- central pixel > 20000 or saturated: 149x149 box size
    #- object near "bright star": 299x299 box size
    nbig = nmedium = nsmall = 0
    for src,cflux in zip(cat, central_flux):
        if cflux > 20000:
            R = 100
            nbig += 1
        elif cflux > 1000:
            R = 30
            nmedium += 1
        else:
            R = 15
            nsmall += 1
        if isinstance(src, PointSource):
            src.fixedRadius = R
        else:
            ### FIXME -- sizes for galaxies..... can we set PSF size separately?
            galrad = 0
            # RexGalaxy is a subclass of ExpGalaxy
            if isinstance(src, (ExpGalaxy, DevGalaxy)):
                galrad = src.shape.re
            elif isinstance(src, FixedCompositeGalaxy):
                galrad = max(src.shapeExp.re, src.shapeDev.re)
            pixscale = 2.75
            src.halfsize = int(np.hypot(R, galrad * 5 / pixscale))

    #print('Set WISE source sizes:', nbig, 'big', nmedium, 'medium', nsmall, 'small')

    minsb = 0.
    fitsky = False

    tractor = Tractor(tims, cat)
    if use_ceres:
        from tractor.ceres_optimizer import CeresOptimizer
        tractor.optimizer = CeresOptimizer(BW=ceres_block, BH=ceres_block)
    tractor.freezeParamsRecursive('*')
    tractor.thawPathsTo(wanyband)

    kwa = dict(fitstat_extras=[('pronexp', [tim.nims for tim in tims])])
    t0 = Time()

    R = tractor.optimize_forced_photometry(
        minsb=minsb, mindlnp=1., sky=fitsky, fitstats=True,
        variance=True, shared_params=False,
        wantims=wantims, **kwa)
    print('unWISE forced photometry took', Time() - t0)

    if use_ceres:
        term = R.ceres_status['termination']
        # Running out of memory can cause failure to converge
        # and term status = 2.
        # Fail completely in this case.
        if term != 0:
            print('Ceres termination status:', term)
            raise RuntimeError(
                'Ceres terminated with status %i' % term)

    if wantims:
        ims1 = R.ims1
    flux_invvars = R.IV
    if R.fitstats is not None:
        for k in fskeys:
            x = getattr(R.fitstats, k)
            fitstats[k] = np.array(x).astype(np.float32)

    if save_fits:
        for i,tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, ie, chi, roi) = ims1[i]
            wcshdr = fitsio.FITSHDR()
            tim.wcs.wcs.add_to_header(wcshdr)
            tag = 'fit-%s-w%i' % (tile.coadd_id, band)
            fitsio.write('%s-data.fits' %
                         tag, dat, clobber=True, header=wcshdr)
            fitsio.write('%s-mod.fits' % tag,  mod,
                         clobber=True, header=wcshdr)
            fitsio.write('%s-chi.fits' % tag,  chi,
                         clobber=True, header=wcshdr)

    if plots:
        # Create models for just the brightest sources
        bright_cat = [src for src in cat
                      if src.getBrightness().getBand(wanyband) > 1000]
        print('Bright soures:', len(bright_cat))
        btr = Tractor(tims, bright_cat)
        for tim in tims:
            mod = btr.getModelImage(tim)
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(mod, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: bright-star models' % tag)
            ps.savefig()

    if get_models:
        for i,tim in enumerate(tims):
            tile = tim.tile
            (dat, mod, ie, chi, roi) = ims1[i]
            models[(tile.coadd_id, band)] = (mod, dat, ie, tim.roi, tim.wcs.wcs)

    if plots:
        for i,tim in enumerate(tims):
            tile = tim.tile
            tag = '%s W%i' % (tile.coadd_id, band)
            (dat, mod, ie, chi, roi) = ims1[i]
            sig1 = tim.sig1
            plt.clf()
            plt.imshow(dat, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: data' % tag)
            ps.savefig()
            plt.clf()
            plt.imshow(mod, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-3 * sig1, vmax=25 * sig1)
            plt.colorbar()
            plt.title('%s: model' % tag)
            ps.savefig()

            plt.clf()
            plt.imshow(chi, interpolation='nearest', origin='lower',
                       cmap='gray', vmin=-5, vmax=+5)
            plt.colorbar()
            plt.title('%s: chi' % tag)
            ps.savefig()


    nm = np.array([src.getBrightness().getBand(wanyband) for src in cat])
    nm_ivar = flux_invvars
    # Sources out of bounds, eg, never change from their default
    # (1-sigma or whatever) initial fluxes.  Zero them out instead.
    nm[nm_ivar == 0] = 0.

    phot.set(wband + '_nanomaggies', nm.astype(np.float32))
    phot.set(wband + '_nanomaggies_ivar', nm_ivar.astype(np.float32))
    dnm = np.zeros(len(nm_ivar), np.float32)
    okiv = (nm_ivar > 0)
    dnm[okiv] = (1. / np.sqrt(nm_ivar[okiv])).astype(np.float32)
    okflux = (nm > 0)
    mag = np.zeros(len(nm), np.float32)
    mag[okflux] = (NanoMaggies.nanomaggiesToMag(nm[okflux])
                   ).astype(np.float32)
    dmag = np.zeros(len(nm), np.float32)
    ok = (okiv * okflux)
    dmag[ok] = (np.abs((-2.5 / np.log(10.)) * dnm[ok] / nm[ok])
                ).astype(np.float32)
    mag[np.logical_not(okflux)] = np.nan
    dmag[np.logical_not(ok)] = np.nan

    phot.set(wband + '_mag', mag)
    phot.set(wband + '_mag_err', dmag)

    for k in fskeys:
        phot.set(wband + '_' + k, fitstats[k])
    phot.set(wband + '_nexp', nexp)
    if not np.all(mjd == 0):
        phot.set(wband + '_mjd', mjd)

    rtn = wphotduck()
    rtn.phot = phot
    rtn.models = None
    rtn.maskmap = None
    if get_models:
        rtn.models = models
    if get_masks:
        rtn.maskmap = maskmap
    return rtn
예제 #29
0
                    hspace=0, wspace=0)

# transpose image
dimshow(tim.getImage().T, vmin=-2.*tim.sig1, vmax=10.*tim.sig1)
plt.title('DECaLS ' + tim.name)
ps.savefig()
ax = plt.axis()
plt.plot(stars.iy, stars.ix, 'r.')
plt.axis(ax)
plt.title('Pan-STARRS stars in DECaLS ' + tim.name)
ps.savefig()

iband = ps1cat.ps1band[tim.band]

stars.mag = stars.median[:,iband]
stars.flux = NanoMaggies.magToNanomaggies(stars.mag)

stars.cut(stars.flux > 1.)
print len(stars), 'brighter than 22.5'

stars.cut(np.argsort(stars.mag))



ima = dict(vmin=-2.*tim.sig1, vmax=10.*tim.sig1, ticks=False)

plt.clf()

#R,C = 10,14
#R,C = 9,13
R,C = 10,13
예제 #30
0
def main(survey=None, opt=None):
    '''Driver function for forced photometry of individual Legacy
    Survey images.
    '''
    if opt is None:
        parser = get_parser()
        opt = parser.parse_args()

    Time.add_measurement(MemMeas)
    t0 = Time()

    if os.path.exists(opt.outfn):
        print('Ouput file exists:', opt.outfn)
        sys.exit(0)

    if opt.derivs and opt.agn:
        print('Sorry, can\'t do --derivs AND --agn')
        sys.exit(0)

    if not opt.forced:
        opt.apphot = True

    zoomslice = None
    if opt.zoom is not None:
        (x0, x1, y0, y1) = opt.zoom
        zoomslice = (slice(y0, y1), slice(x0, x1))

    ps = None
    if opt.plots is not None:
        import pylab as plt
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence(opt.plots)

    # Try parsing filename as exposure number.
    try:
        expnum = int(opt.expnum)
        filename = None
    except:
        # make this 'None' for survey.find_ccds()
        expnum = None
        filename = opt.expnum

    # Try parsing HDU number
    try:
        hdu = int(opt.ccdname)
        ccdname = None
    except:
        hdu = -1
        ccdname = opt.ccdname

    if survey is None:
        survey = LegacySurveyData()

    catsurvey = survey
    if opt.catalog_dir is not None:
        catsurvey = LegacySurveyData(survey_dir=opt.catalog_dir)

    if filename is not None and hdu >= 0:
        # FIXME -- try looking up in CCDs file?
        # Read metadata from file
        print('Warning: faking metadata from file contents')
        T = exposure_metadata([filename], hdus=[hdu])
        print('Metadata:')
        T.about()

        if not 'ccdzpt' in T.columns():
            phdr = fitsio.read_header(filename)
            T.ccdzpt = np.array([phdr['MAGZERO']])
            print('WARNING: using header MAGZERO')
            T.ccdraoff = np.array([0.])
            T.ccddecoff = np.array([0.])
            print('WARNING: setting CCDRAOFF, CCDDECOFF to zero.')

    else:
        # Read metadata from survey-ccds.fits table
        T = survey.find_ccds(expnum=expnum, ccdname=ccdname)
        print(len(T), 'with expnum', expnum, 'and CCDname', ccdname)
        if hdu >= 0:
            T.cut(T.image_hdu == hdu)
            print(len(T), 'with HDU', hdu)
        if filename is not None:
            T.cut(np.array([f.strip() == filename for f in T.image_filename]))
            print(len(T), 'with filename', filename)
        if opt.camera is not None:
            T.cut(T.camera == opt.camera)
            print(len(T), 'with camera', opt.camera)
        assert (len(T) == 1)

    ccd = T[0]
    im = survey.get_image_object(ccd)

    if opt.do_calib:
        #from legacypipe.survey import run_calibs
        #kwa = dict(splinesky=True)
        #run_calibs((im, kwa))
        im.run_calibs(splinesky=True)

    tim = im.get_tractor_image(slc=zoomslice,
                               pixPsf=True,
                               splinesky=True,
                               constant_invvar=opt.constant_invvar,
                               hybridPsf=opt.hybrid_psf,
                               normalizePsf=opt.normalize_psf)
    print('Got tim:', tim)

    print('Read image:', Time() - t0)

    if opt.catfn in ['DR1', 'DR2', 'DR3', 'DR5', 'DR']:

        margin = 20
        TT = []
        chipwcs = tim.subwcs
        bricks = bricks_touching_wcs(chipwcs, survey=catsurvey)
        for b in bricks:
            # there is some overlap with this brick... read the catalog.
            fn = catsurvey.find_file('tractor', brick=b.brickname)
            if not os.path.exists(fn):
                print('WARNING: catalog', fn, 'does not exist.  Skipping!')
                continue
            print('Reading', fn)
            T = fits_table(fn)
            ok, xx, yy = chipwcs.radec2pixelxy(T.ra, T.dec)
            W, H = chipwcs.get_width(), chipwcs.get_height()
            I = np.flatnonzero((xx >= -margin) * (xx <= (W + margin)) *
                               (yy >= -margin) * (yy <= (H + margin)))
            T.cut(I)
            print('Cut to', len(T), 'sources within image + margin')
            # print('Brick_primary:', np.unique(T.brick_primary))
            T.cut(T.brick_primary)
            print('Cut to', len(T), 'on brick_primary')
            for col in ['out_of_bounds', 'left_blob']:
                if col in T.get_columns():
                    T.cut(T.get(col) == False)
                    print('Cut to', len(T), 'on', col)
            if len(T):
                TT.append(T)
        if len(TT) == 0:
            print('No sources to photometer.')
            return 0
        T = merge_tables(TT, columns='fillzero')
        T._header = TT[0]._header
        del TT
        print('Total of', len(T), 'catalog sources')

        # Fix up various failure modes:
        # FixedCompositeGalaxy(pos=RaDecPos[240.51147402832561, 10.385488075518923], brightness=NanoMaggies: g=(flux -2.87), r=(flux -5.26), z=(flux -7.65), fracDev=FracDev(0.60177207), shapeExp=re=3.78351e-44, e1=9.30367e-13, e2=1.24392e-16, shapeDev=re=inf, e1=-0, e2=-0)
        # -> convert to EXP
        I = np.flatnonzero(
            np.array([((t.type == 'COMP') and (not np.isfinite(t.shapedev_r)))
                      for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to EXP')
            for i in I:
                T.type[i] = 'EXP'

        # Same thing with the exp component.
        # -> convert to DEV
        I = np.flatnonzero(
            np.array([((t.type == 'COMP') and (not np.isfinite(t.shapeexp_r)))
                      for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to DEV')
            for i in I:
                T.type[i] = 'DEV'

        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    else:
        T = fits_table(opt.catfn)

    surveydir = survey.get_survey_dir()
    del survey

    kwargs = {}
    cols = T.get_columns()
    if 'flux_r' in cols and not 'decam_flux_r' in cols:
        kwargs.update(fluxPrefix='')
    cat = read_fits_catalog(T, **kwargs)
    # Replace the brightness (which will be a NanoMaggies with g,r,z)
    # with a NanoMaggies with this image's band only.
    for src in cat:
        src.brightness = NanoMaggies(**{tim.band: 1.})

    print('Read catalog:', Time() - t0)

    print('Forced photom...')
    F = run_forced_phot(cat,
                        tim,
                        ceres=opt.ceres,
                        derivs=opt.derivs,
                        fixed_also=True,
                        agn=opt.agn,
                        do_forced=opt.forced,
                        do_apphot=opt.apphot,
                        ps=ps)
    t0 = Time()

    F.release = T.release
    F.brickid = T.brickid
    F.brickname = T.brickname
    F.objid = T.objid

    F.camera = np.array([ccd.camera] * len(F))
    F.expnum = np.array([im.expnum] * len(F)).astype(np.int32)
    F.ccdname = np.array([im.ccdname] * len(F))

    # "Denormalizing"
    F.filter = np.array([tim.band] * len(T))
    F.mjd = np.array([tim.primhdr['MJD-OBS']] * len(T))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(T)).astype(np.float32)
    F.ra = T.ra
    F.dec = T.dec

    ok, x, y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x - 1).astype(np.float32)
    F.y = (y - 1).astype(np.float32)

    h, w = tim.shape
    F.mask = tim.dq[np.clip(np.round(F.y).astype(int), 0, h - 1),
                    np.clip(np.round(F.x).astype(int), 0, w - 1)]

    program_name = sys.argv[0]
    version_hdr = get_version_header(program_name, surveydir)
    filename = getattr(ccd, 'image_filename')
    if filename is None:
        # HACK -- print only two directory names + filename of CPFILE.
        fname = os.path.basename(im.imgfn)
        d = os.path.dirname(im.imgfn)
        d1 = os.path.basename(d)
        d = os.path.dirname(d)
        d2 = os.path.basename(d)
        filename = os.path.join(d2, d1, fname)
        print('Trimmed filename to', filename)
    version_hdr.add_record(
        dict(name='CPFILE', value=filename, comment='CP file'))
    version_hdr.add_record(dict(name='CPHDU', value=im.hdu, comment='CP ext'))
    version_hdr.add_record(
        dict(name='CAMERA', value=ccd.camera, comment='Camera'))
    version_hdr.add_record(
        dict(name='EXPNUM', value=im.expnum, comment='Exposure num'))
    version_hdr.add_record(
        dict(name='CCDNAME', value=im.ccdname, comment='CCD name'))
    version_hdr.add_record(
        dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(
        dict(name='EXPOSURE',
             value='%s-%s-%s' % (ccd.camera, im.expnum, im.ccdname),
             comment='Name of this image'))

    keys = [
        'TELESCOP', 'OBSERVAT', 'OBS-LAT', 'OBS-LONG', 'OBS-ELEV', 'INSTRUME'
    ]
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    hdr = fitsio.FITSHDR()
    units = {
        'exptime': 'sec',
        'flux': 'nanomaggy',
        'flux_ivar': '1/nanomaggy^2'
    }
    columns = F.get_columns()
    for i, col in enumerate(columns):
        if col in units:
            hdr.add_record(dict(name='TUNIT%i' % (i + 1), value=units[col]))

    outdir = os.path.dirname(opt.outfn)
    if len(outdir):
        trymakedirs(outdir)
    fitsio.write(opt.outfn, None, header=version_hdr, clobber=True)
    F.writeto(opt.outfn, header=hdr, append=True)
    print('Wrote', opt.outfn)

    if opt.save_model or opt.save_data:
        hdr = fitsio.FITSHDR()
        tim.getWcs().wcs.add_to_header(hdr)
    if opt.save_model:
        print('Getting model image...')
        tr = Tractor([tim], cat)
        mod = tr.getModelImage(tim)
        fitsio.write(opt.save_model, mod, header=hdr, clobber=True)
        print('Wrote', opt.save_model)
    if opt.save_data:
        fitsio.write(opt.save_data, tim.getImage(), header=hdr, clobber=True)
        print('Wrote', opt.save_data)

    print('Finished forced phot:', Time() - t0)
    return 0