def adv_train_process(self,delay=0.5): "Adversarial training, returns pertubed mini batch" "delay: parameter to decide how many epochs should be used as adv training" if self.opts['Adversary'] == 'WT': adv_train_data_path = '../data/WalkieTalkie/defended_csv/adv_train_WT.csv' else: adv_train_data_path = self.data_path + self.classifier_type + '/' + self.opts['adv_train_data_path'] print('adv train data path: ',adv_train_data_path) if self.mode in ['wf','wf_ow','wf_kf']: "load data" if self.mode != 'wf_kf': train_path = self.data_path + self.opts['train_data_path'] train_data = utils_wf.load_data_main(train_path,self.opts['batch_size'],shuffle=True) # test_data = utils_wf.load_data_main(self.data_path + self.opts['test_data_path'],self.opts['batch_size']) else: # benign_path = '../data/wf/cross_val/' # train_path = benign_path + self.opts['train_data_path'] train_path = '../data/wf/train_NoDef_burst.csv' train_data = utils_wf.load_data_main(train_path,self.opts['batch_size'], shuffle=True) # test_data = utils_wf.load_data_main(benign_path + self.opts['test_data_path'],self.opts['batch_size']) print('train data path: ',train_path) adv_train_data = utils_wf.load_data_main(adv_train_data_path,self.opts['batch_size'],shuffle=True) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) target_model.train() elif self.classifier_type == 'lstm': if self.mode == 'wf_ow': params = utils_wf.params_lstm_ow(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size']) else: params = utils_wf.params_lstm(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size']) target_model = models.lstm(params).to(self.device) target_model.train() elif self.mode == 'shs': "load data" train_data = utils_shs.load_data_main(self.data_path + self.opts['train_data_path'],self.opts['batch_size']) test_data = utils_shs.load_data_main(self.data_path + self.opts['test_data_path'],self.opts['batch_size']) adv_train_data = utils_shs.load_data_main(adv_train_data_path, self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_shs.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) target_model.train() elif self.classifier_type == 'lstm': params = utils_shs.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) target_model.train() else: print('mode not in ["wf","shs"], system will exit.') sys.exit() loss_criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(target_model.parameters(), lr=1e-3) "start training" steps = 0 flag = False start_time = datetime.now() # print('adversary working dir {}'.format(adv_train_data_path)) for epoch in range(self.opts['epochs']): print('Starting epoch %d / %d' % (epoch + 1, self.opts['epochs'])) if flag: print('{} based adversarial training...'.format(self.opts['Adversary'])) for (x,y),(x_adv,y_adv) in zip(train_data,adv_train_data): steps += 1 optimizer.zero_grad() x,y = x.to(self.device), y.to(self.device) outputs = target_model(x) loss = loss_criterion(outputs,y) "adversarial training" if epoch + 1 >= int((1-delay)*self.opts['epochs']): x_adv, y_adv = x_adv.to(self.device), y_adv.to(self.device) flag = True loss_adv = loss_criterion(target_model(x_adv),y_adv) loss = (loss + loss_adv) / 2 "print results every 100 steps" if steps % 100 == 0: end_time = datetime.now() time_diff = (end_time - start_time).seconds time_usage = '{:3}m{:3}s'.format(int(time_diff / 60), time_diff % 60) msg = "Step {:5}, Loss:{:6.2f}, Time usage:{:9}." print(msg.format(steps, loss, time_usage)) loss.backward() optimizer.step() if epoch!=0 and epoch % 10 == 0 or epoch == self.opts['epochs']: if self.mode != 'wf_kf': output_name = '/adv_target_model_%s.pth' % self.opts['Adversary'] else: output_name = '/adv_target_model_%s_%d.pth' % (self.opts['Adversary'], self.opts['id']) output_path = self.model_path + output_name torch.save(target_model.state_dict(), output_path) "test trianed model"
def test_peformance(self, threshold_val): "load data and target model" if self.mode == 'wf_ow': "load data" if self.opts['test_data_type'] == 'NoDef': test_data_Mon = utils_wf.load_data_main( self.opts['test_data_Mon_path'], self.opts['batch_size']) test_data_UnMon = utils_wf.load_data_main( self.opts['test_data_UnMon_path'], self.opts['batch_size']) elif self.opts['test_data_type'] == 'Def': test_data_Mon = utils_wf.load_data_main( self.opts['adv_test_data_Mon_path'], self.opts['batch_size']) test_data_UnMon = utils_wf.load_data_main( self.opts['adv_test_data_UnMon_path'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': params = utils_wf.params_lstm_ow_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) else: print('mode not in ["wf_ow"], system will exit.') sys.exit() if self.model_type == 'adv_target_model': model_name = self.model_path + '/adv_target_model_' + self.opts[ 'Adversary'] + '.pth' elif self.model_type == 'target_model': model_name = self.model_path + '/target_model.pth' else: print( 'target model type not in ["target_model","adv_target_model"], system will exit.' ) sys.exit() target_model.load_state_dict( torch.load(model_name, map_location=self.device)) target_model.eval() print('target model %s' % model_name) print('test data path unmonitored %s ' % self.opts['adv_test_data_UnMon_path']) print('test data path monitored %s ' % self.opts['adv_test_data_Mon_path']) # ============================================================== "testing process..." TP = 0 FP = 0 TN = 0 FN = 0 "obtain monitored and Unmonitored lables" _, y_test_Mon = utils_wf.load_csv_data(self.opts['test_data_Mon_path']) _, y_test_UnMon = utils_wf.load_csv_data( self.opts['test_data_UnMon_path']) monitored_labels = torch.Tensor(y_test_Mon).long().to(self.device) unmonitored_labels = torch.Tensor(y_test_UnMon).long().to(self.device) # ============================================================== # Test with Monitored testing instances for i, data in enumerate(test_data_Mon, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) max_probs, pred_labels = torch.max( torch.softmax(target_model(test_x), 1), 1) for j, pred_label in enumerate(pred_labels): if pred_label in monitored_labels: # predited as Monitored if max_probs[ j] >= threshold_val: # probability greater than the threshold TP += 1 else: # predicted as unmonitored and true lable is Monitored FN += 1 elif pred_label in unmonitored_labels: # predicted as unmonitored and true lable is monitored FN += 1 # ============================================================== # Test with Unmonitored testing instances for i, data in enumerate(test_data_UnMon, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) max_probs, pred_labels = torch.max( torch.softmax(target_model(test_x), 1), 1) for j, pred_label in enumerate(pred_labels): if pred_label in unmonitored_labels: # predited as unmonitored and true label is unmonitored TN += 1 elif pred_label in monitored_labels: # predicted as Monitored if max_probs[ j] >= threshold_val: # predicted as monitored and true label is unmonitored FP += 1 else: TN += 1 "print result" print("TP : ", TP) print("FP : ", FP) print("TN : ", TN) print("FN : ", FN) print("Total : ", TP + FP + TN + FN) TPR = float(TP) / (TP + FN) print("TPR : ", TPR) FPR = float(FP) / (FP + TN) print("FPR : ", FPR) Precision = float(TP) / (TP + FP) print("Precision : ", Precision) Recall = float(TP) / (TP + FN) print("Recall : ", Recall) print("\n") self.log_file.writelines( "%.6f,%d,%d,%d,%d,%.6f,%.6f,%.6f,%.6f\n" % (threshold_val, TP, FP, TN, FN, TPR, FPR, Precision, Recall))
def train(self,train_dataloader): "load target model" if self.mode == 'wf' or 'wf_ow' or 'wf_kf': "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': "eval: lstm can't work on eval model, so set dropout as 0 to make train model as eval model" if self.mode == 'wf_ow': params = utils_wf.params_lstm_ow_eval(self.opts['num_class'], self.opts['input_size'],self.opts['batch_size']) else: params = utils_wf.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load target model structure" if self.classifier_type == 'cnn': params = utils_shs.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) elif self.classifier_type == 'lstm': "eval: lstm can't work on eval model, so set dropout as 0 to make train model as eval model" params = utils_shs.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) else: print('mode not in ["wf","shs","wf_ow","wf_kf"], system will exit.') sys.exit() if self.mode == 'wf_kf': model_name = '/target_model_%d.pth' % self.opts['id'] else: model_name = '/target_model.pth' model_path = self.model_path + model_name target_model.load_state_dict(torch.load(model_path, map_location=self.device)) "set equal_eval mode of train instead eval for lstm" if self.classifier_type == 'lstm': target_model = self.model_reset(target_model) target_model.train() elif self.classifier_type == 'cnn': target_model.eval() target_model.to(self.device) for epoch in range(1, self.opts['epochs'] + 1): if epoch == 50: self.optimizer_G = torch.optim.Adam(self.generator.parameters(), lr=0.0001) self.optimizer_D = torch.optim.Adam(self.discriminator.parameters(), lr=0.0001) if epoch == 80: self.optimizer_G = torch.optim.Adam(self.generator.parameters(), lr=0.00001) self.optimizer_D = torch.optim.Adam(self.discriminator.parameters(), lr=0.00001) loss_D_sum = 0 loss_G_fake_sum = 0 loss_perturb_sum = 0 loss_adv_sum = 0 for i, data in enumerate(train_dataloader, start=0): train_x, train_y = data train_x, train_y = train_x.to(self.device), train_y.to(self.device) loss_D_batch, loss_G_fake_batch, loss_perturb_batch, loss_adv_batch = \ self.train_batch(train_x, train_y,target_model) loss_D_sum += loss_D_batch loss_G_fake_sum += loss_G_fake_batch loss_perturb_sum += loss_perturb_batch loss_adv_sum += loss_adv_batch "print statistics" num_batch = len(train_dataloader) print("epoch %d:\nloss_D: %.3f, loss_G_fake: %.3f,\ \nloss_perturb: %.3f, loss_adv: %.3f, \n" % (epoch, loss_D_sum / num_batch, loss_G_fake_sum / num_batch, loss_perturb_sum / num_batch, loss_adv_sum / num_batch)) "save generator" if epoch != 0 and epoch % 10 == 0: if self.mode == 'wf_kf': out_model_name = '/adv_generator_%d.pth' % self.opts['id'] else: out_model_name = '/adv_generator.pth' torch.save(self.generator.state_dict(), self.model_path + out_model_name)
def test_model(self): "define test data type/path" # classifier cross validation: if self.opts['cross_validation']: if self.classifier_type == 'lstm': adv_test_data_path = '../data/' + self.mode + '/cnn/' + self.opts[ 'adv_test_data_path'] elif self.classifier_type == 'cnn': adv_test_data_path = '../data/' + self.mode + '/lstm/' + self.opts[ 'adv_test_data_path'] else: print( 'classifier type should in [lstm,cnn]. System will exit!') sys.exit() # test on Walkie-Talkie defended data elif self.opts['Adversary'] == 'WT': adv_test_data_path = '../data/WalkieTalkie/defended_csv/adv_test_WT.csv' else: adv_test_data_path = self.data_path + '/' + self.opts[ 'adv_test_data_path'] print('adv test data path: ', adv_test_data_path) "load data and model" if self.mode == 'wf' or 'wf_ow' or 'wf_kf': "load data" if self.mode == 'wf_kf': test_path = '../data/wf/cross_val/' + self.opts[ 'test_data_path'] test_data = utils_wf.load_data_main(test_path, self.opts['batch_size']) else: test_path = '../data/wf/' + self.opts['test_data_path'] test_data = utils_wf.load_data_main(test_path, self.opts['batch_size']) adv_test_data = utils_wf.load_data_main(adv_test_data_path, self.opts['batch_size']) print('test data path: ', test_path) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': if self.mode == 'wf_ow': params = utils_wf.params_lstm_ow_eval( self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) else: params = utils_wf.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load data" test_data = utils_shs.load_data_main( '../data/' + self.mode + '/' + self.opts['test_data_path'], self.opts['batch_size']) adv_test_data = utils_shs.load_data_main(adv_test_data_path, self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_shs.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) elif self.classifier_type == 'lstm': params = utils_shs.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) else: print('mode not in ["wf","shs"], system will exit.') sys.exit() if self.model_type == 'adv_target_model': if self.mode == 'wf_kf': model_name = self.model_path + '/adv_target_model_%s_%d.pth' % ( self.opts['Adversary'], self.opts['id']) else: model_name = self.model_path + '/adv_target_model_' + self.opts[ 'Adversary'] + '.pth' elif self.model_type == 'target_model': if self.mode == 'wf_kf': model_name = self.model_path + '/target_model_%d.pth' % self.opts[ 'id'] else: model_name = self.model_path + '/target_model.pth' else: print( 'target model type not in ["target_model","adv_target_model"], system will exit.' ) sys.exit() print('model path: ', model_name) target_model.load_state_dict( torch.load(model_name, map_location=self.device)) target_model.eval() "test on adversarial examples" correct_adv_x = 0 correct_x = 0 total_case = 0 for (x, y), (adv_x, adv_y) in zip(test_data, adv_test_data): x, y = x.to(self.device), y.to(self.device) adv_x, adv_y = adv_x.to(self.device), adv_y.to(self.device) "prediction on original input x" pred_x = target_model(x) _, pred_x = torch.max(pred_x, 1) correct_x += (pred_x == y).sum() "predition on adv_x" pred_adv_x = target_model(adv_x) _, pred_adv_x = torch.max(pred_adv_x, 1) correct_adv_x += (pred_adv_x == adv_y).sum() total_case += len(y) acc_x = float(correct_x.item()) / float(total_case) acc_adv = float(correct_adv_x.item()) / float(total_case) print('*' * 30) print('"{}" with {} against {}.'.format(self.mode, self.opts['Adversary'], self.model_type)) print('correct test after attack is {}'.format(correct_adv_x.item())) print('total test instances is {}'.format(total_case)) print( 'accuracy of test after {} attack : correct/total= {:.5f}'.format( self.opts['Adversary'], acc_adv)) print('success rate of the attack is : {}'.format(1 - acc_adv)) print('accucary of the model without being attacked is {:.5f}'.format( acc_x)) print('\n')
def train_model(self): if self.mode == 'wf' or 'detect': "load data" if mode == 'wf': train_data = utils_wf.load_data_main( self.opts['train_data_path'], self.opts['batch_size']) # test_data = utils_wf.load_data_main(self.opts['test_data_path'],self.opts['batch_size']) elif mode == 'detect': train_data = utils_wf.load_NormData_main( self.opts['train_data_path'], self.opts['batch_size']) # test_data = utils_wf.load_NormData_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.opts['classifier'] == 'lstm': params = utils_wf.params_lstm_detect(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.opts['classifier'] == 'rnn': params = utils_wf.params_rnn(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.rnn(params).to(self.device) elif self.opts['classifier'] == 'cnn': params = utils_wf.params_cnn_detect(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn(params).to(self.device) elif self.opts['classifier'] == 'fcnn': params = utils_wf.params_fcnn(self.opts['num_class'], self.opts['input_size']) target_model = models.fcnn(params).to(self.device) target_model.train() elif self.mode == 'shs': "load data" train_data = utils_shs.load_data_main(self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" params = utils_shs.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) target_model.train() else: print('mode not in ["wf","shs"], system will exit.') sys.exit() "train process" optimizer = torch.optim.Adam(target_model.parameters(), lr=self.opts['lr']) for epoch in range(self.opts['epochs']): loss_epoch = 0 for i, data in enumerate(train_data, 0): train_x, train_y = data train_x, train_y = train_x.to(self.device), train_y.to( self.device) "batch_first = False" if not self.opts['batch_size']: train_x = train_x.transpose(0, 1) optimizer.zero_grad() logits_model = target_model(train_x) loss_model = F.cross_entropy(logits_model, train_y) loss_epoch += loss_model loss_model.backward(retain_graph=True) optimizer.step() if i % 100 == 0: _, predicted = torch.max(logits_model, 1) correct = int(sum(predicted == train_y)) accuracy = correct / len(train_y) msg = 'Epoch {:5}, Step {:5}, Loss: {:6.2f}, Accuracy:{:8.2%}.' print(msg.format(epoch, i, loss_model, accuracy)) "empty cache" del train_x, train_y torch.cuda.empty_cache() "save model every 10 epochs" if epoch % 10 == 0: targeted_model_path = self.model_path + '/target_model.pth' torch.save(target_model.state_dict(), targeted_model_path) "test target model"
def train_model(self): if self.mode == 'wf': "load data" train_data = utils_wf.load_data_main(self.opts['train_data_path'],self.opts['batch_size']) test_data = utils_wf.load_data_main(self.opts['test_data_path'],self.opts['batch_size']) "load target model structure" # params = utils_wf.params_lstm(self.opts['num_class'],self.opts['input_size'],self.opts['batch_size']) target_model = models.lstm(self.params).to(self.device) target_model.train() elif self.mode == 'shs': "load data" train_data = utils_shs.load_data_main(self.opts['train_data_path'],self.opts['batch_size']) test_data = utils_shs.load_data_main(self.opts['test_data_path'],self.opts['batch_size']) "load target model structure" # params = utils_shs.params_lstm(self.opts['num_class'],self.opts['input_size'],self.opts['batch_size']) target_model = models.lstm(self.params).to(self.device) target_model.train() else: print('mode not in ["wf","shs"], system will exit.') sys.exit() "train process" optimizer = torch.optim.Adam(target_model.parameters(),lr=self.opts['lr']) for epoch in range(self.opts['epochs']): loss_epoch = 0 for i, data in enumerate(train_data, 0): train_x, train_y = data train_x, train_y = train_x.to(self.device), train_y.to(self.device) "batch_first = False" if not self.opts['batch_size']: train_x = train_x.transpose(0,1) optimizer.zero_grad() logits_model = target_model(train_x) loss_model = F.cross_entropy(logits_model, train_y) loss_epoch += loss_model loss_model.backward(retain_graph=True) optimizer.step() if i % 100 == 0: _, predicted = torch.max(logits_model, 1) correct = int(sum(predicted == train_y)) accuracy = correct / len(train_y) msg = 'Epoch {:5}, Step {:5}, Loss: {:6.2f}, Accuracy:{:8.2%}.' print(msg.format(epoch, i, loss_model, accuracy)) "report intermediate result" nni.report_intermediate_result(accuracy) "save model every 10 epochs" if epoch % 10 == 0: targeted_model_path = self.model_path + '/target_model.pth' torch.save(target_model.state_dict(), targeted_model_path) "test target model" target_model.eval() num_correct = 0 total_instances = 0 for i, data in enumerate(test_data, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) pred_lab = torch.argmax(target_model(test_x), 1) num_correct += torch.sum(pred_lab == test_y, 0) total_instances += len(test_y) acc = num_correct.item() / total_instances print('accuracy of target model against test dataset: %f\n' % (acc)) "report final result " nni.report_final_result(acc)
def test_model(self): "load data and target model" if self.mode == 'wf' or 'detect': "load data" if mode == 'wf': # train_data = utils_wf.load_data_main(self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_wf.load_data_main( self.opts['test_data_path'], self.opts['batch_size']) elif mode == 'detect': # train_data = utils_wf.load_NormData_main(self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_wf.load_NormData_main( self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.opts['classifier'] == 'lstm': params = utils_wf.params_lstm_detect(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.opts['classifier'] == 'rnn': params = utils_wf.params_rnn(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.rnn(params).to(self.device) elif self.opts['classifier'] == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn(params).to(self.device) elif self.opts['classifier'] == 'fcnn': params = utils_wf.params_fcnn(self.opts['num_class'], self.opts['input_size']) target_model = models.fcnn(params).to(self.device) target_model.eval() elif self.mode == 'shs': "load data" # train_data = utils_shs.load_data_main(self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" params = utils_shs.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) target_model.train() else: print('mode not in ["wf","shs"], system will exit.') sys.exit() model_name = self.model_path + '/target_model.pth' model_weights = torch.load(model_name, map_location=self.device) for k in model_weights: print(k) # for k in model_weights['shared_layers']: print("Shared layer", k) target_model.load_state_dict( torch.load(model_name, map_location=self.device)) target_model.eval() num_correct = 0 total_instances = 0 y_test = [] y_pred = [] for i, data in enumerate(test_data, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) pred_lab = torch.argmax(target_model(test_x), 1) num_correct += torch.sum(pred_lab == test_y, 0) total_instances += len(test_y) "save result" y_test += (test_y.cpu().numpy().tolist()) y_pred += (pred_lab.cpu().numpy().tolist()) print('{} with {}'.format(self.opts['mode'], self.opts['classifier'])) print(classification_report(y_test, y_pred)) print('confusion matrix is {}'.format(confusion_matrix(y_test, y_pred))) print('accuracy of target model against test dataset: %f\n' % (num_correct.item() / total_instances)) print('accuracy is {}'.format(metrics.accuracy_score(y_test, y_pred))) # plot confusion matrix cm = confusion_matrix(y_test, y_pred) heat_map(cm, self.opts['classifier'], namorlize=True)
def ploting(self): "load data and model" if self.mode == 'wf': "load data" test_data = utils_wf.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': params = utils_wf.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load data" test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" params = utils_shs.params(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) else: print('mode not in ["wf","shs"], system will exit.') sys.exit() model_name = self.model_path + '/target_model.pth' target_model.load_state_dict( torch.load(model_name, map_location=self.device)) "set equal_eval mode of train instead eval for lstm to aviod backward error" if self.classifier_type == 'lstm': target_model = self.model_reset(target_model) target_model.train() elif self.classifier_type == 'cnn': target_model.eval() target_model.to(self.device) ############################################### for i, data in enumerate(test_data): if i < self.opts['num_figs']: for Adversary in ['FGSM', 'PGD', 'DeepFool', 'GAN']: x, y = data x, y = x.to(self.device), y.to(self.device) "set adversary" if self.mode == 'wf': fgsm_epsilon = 0.1 pgd_a = 0.051 else: fgsm_epsilon = 0.1 pgd_a = 0.01 if Adversary == 'GAN': pretrained_generator_path = self.model_path + '/adv_generator.pth' pretrained_G = models.Generator( self.gen_input_nc, self.input_nc).to(self.device) pretrained_G.load_state_dict( torch.load(pretrained_generator_path, map_location=self.device)) pretrained_G.eval() elif Adversary == 'FGSM': adversary = FGSM(self.mode, self.x_box_min, self.x_box_max, self.pert_box, epsilon=fgsm_epsilon) elif Adversary == 'DeepFool': adversary = DeepFool(self.mode, self.x_box_min, self.x_box_max, self.pert_box, num_classes=5) elif Adversary == 'PGD': adversary = LinfPGDAttack(self.mode, self.x_box_min, self.x_box_max, self.pert_box, k=5, a=pgd_a, random_start=False) "generate adversarial examples" if Adversary == 'GAN': pert = pretrained_G(x) "cal adv_x given different mode wf/shs" adv_x = utils_gan.get_advX_gan( x, pert, self.mode, pert_box=self.opts['pert_box'], x_box_min=self.opts['x_box_min'], x_box_max=self.opts['x_box_max'], alpha=self.opts['alpha']) elif Adversary in ['FGSM', 'PGD', 'DeepFool']: _, y_pred = torch.max(target_model(x), 1) "cal adv_x given different mode wf/shs. the mode of adversary set before" adversary.model = target_model "use predicted label to prevent label leaking" _, adv_x = adversary.perturbation( x, y_pred, self.opts['alpha']) else: print('No Adversary found! System will exit.') sys.exit() if self.mode == 'shs': adv_x = (adv_x.data.cpu().numpy().squeeze() * 1500).round() elif self.mode == 'wf': "if the data use L2 normalized, then need to inverse it back" # normalization = utils_wf.normalizer(x) # adv_x = normalization.inverse_Normalizer(adv_x) adv_x = adv_x.data.cpu().numpy().squeeze() adv_x = adv_x.squeeze() else: print('mode should in ["wf","shs"], system will exit.') sys.exit() x_np = x.data.cpu().numpy().squeeze() pert = adv_x - x_np # traffics.append(np.squeeze(x.data.cpu().numpy().squeeze())) # adv_traffics.append(adv_x) # noise.append(pert) "plot" utils_shs.single_traffic_plot( self.classifier_type + '_' + str(i), x_np, adv_x, Adversary) utils_shs.noise_plot(self.classifier_type + '_' + str(i), pert, Adversary)
def generate(self): "generate adv_x given x, append with its original label y instead with y_pert " "load data and target model" if self.mode in ['wf', 'wf_ow', 'wf_kf', 'wf_sg']: "load data" if self.mode != 'wf_sg': train_data = utils_wf.load_data_main( self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_wf.load_data_main( self.opts['test_data_path'], self.opts['batch_size']) else: input_data = utils_wf.load_data_main( self.opts['input_data_path'], self.opts['batch_size']) train_data, test_data = [] if self.mode == 'wf_ow': test_data_UnMon = utils_wf.load_data_main( self.opts['test_data_path_UnMon'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': if self.mode == 'wf_ow': params = utils_wf.params_lstm_ow_eval( self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) else: params = utils_wf.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load data" train_data = utils_shs.load_data_main(self.opts['train_data_path'], self.opts['batch_size']) test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_shs.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) elif self.classifier_type == 'lstm': params = utils_shs.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) else: print( 'mode not in ["wf","shs","wf_ow","wf_kf"], system will exit.') sys.exit() # load trained model if self.mode == 'wf_kf': model_name = '/target_model_%d.pth' % self.opts['id'] else: model_name = '/target_model.pth' model_path = self.model_path + model_name target_model.load_state_dict( torch.load(model_path, map_location=self.device)) "set adversary" Adversary = self.opts['Adversary'] if self.mode == 'wf' or 'wf_ow' or 'wf_kf': fgsm_epsilon = 0.1 pgd_a = 0.051 # if data un-normalized # pgd_a = 0.01 # if data normalized else: fgsm_epsilon = 0.1 pgd_a = 0.01 if Adversary == 'GAN': if self.mode == 'wf_kf': g_name = '/adv_generator_%d.pth' % self.opts['id'] else: g_name = '/adv_generator.pth' pretrained_generator_path = self.model_path + g_name adversary = models.Generator(self.gen_input_nc, self.input_nc).to(self.device) adversary.load_state_dict( torch.load(pretrained_generator_path, map_location=self.device)) adversary.eval() elif Adversary == 'FGSM': adversary = FGSM(self.mode, self.x_box_min, self.x_box_max, self.pert_box, epsilon=fgsm_epsilon) elif Adversary == 'DeepFool': adversary = DeepFool(self.mode, self.x_box_min, self.x_box_max, self.pert_box, num_classes=5) elif Adversary == 'PGD': adversary = LinfPGDAttack(self.mode, self.x_box_min, self.x_box_max, self.pert_box, k=5, a=pgd_a, random_start=False) "produce adv_x given differen input data" # test data Monitored data_type = 'test' self.get_adv_x(test_data, Adversary, adversary, target_model, data_type) # test data Unmonitored in open world setting if self.mode == 'wf_ow': data_type = 'test_UnMon' self.get_adv_x(test_data_UnMon, Adversary, adversary, target_model, data_type) #train data data_type = 'train' self.get_adv_x(train_data, Adversary, adversary, target_model, data_type)
def test_peformance(self): "load data and target model" if self.mode == 'wf' or 'detect' or 'wf_ow' or 'wf_tf': "load data" test_data = utils_wf.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': if self.mode == 'wf_ow': params = utils_wf.params_lstm_ow(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) elif self.mode == 'wf_kf': params = utils_wf.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) else: params = utils_wf.params_lstm(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load data" test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" params = utils_shs.params(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) else: print('mode not in ["wf","shs"], system will exit.') sys.exit() if self.mode == 'wf_kf': model_name = '/target_model_%d.pth' % self.opts['id'] else: model_name = '/target_model.pth' model_path = self.model_path + model_name print(model_path) target_model.load_state_dict( torch.load(model_path, map_location=self.device)) target_model.eval() "testing process..." num_correct = 0 total_case = 0 y_test = [] y_pred = [] for i, data in enumerate(test_data, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) "add softmax after fc of model to normalize output as positive values and sum =1" pred_lab = torch.argmax(torch.softmax(target_model(test_x), 1), 1) # pred_lab = torch.argmax(target_model(test_x), 1) num_correct += torch.sum(pred_lab == test_y, 0) total_case += len(test_y) "save result" y_test += (test_y.cpu().numpy().tolist()) y_pred += (pred_lab.cpu().numpy().tolist()) # print('accuracy in testing set: %f\n' % (num_correct.item() / total_case)) # print(classification_report(y_test, y_pred)) print('confusion matrix is {}'.format(confusion_matrix(y_test, y_pred))) print('accuracy is {}'.format(metrics.accuracy_score(y_test, y_pred)))
def test_model(self): "load data and model" if self.mode == 'wf': "load data" test_data = utils_wf.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" if self.classifier_type == 'cnn': params = utils_wf.params_cnn(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_norm(params).to(self.device) elif self.classifier_type == 'lstm': params = utils_wf.params_lstm_eval(self.opts['num_class'], self.opts['input_size'], self.opts['batch_size']) target_model = models.lstm(params).to(self.device) elif self.mode == 'shs': "load data" test_data = utils_shs.load_data_main(self.opts['test_data_path'], self.opts['batch_size']) "load target model structure" params = utils_shs.params(self.opts['num_class'], self.opts['input_size']) target_model = models.cnn_noNorm(params).to(self.device) else: print('mode not in ["wf","shs"], system will exit.') sys.exit() if self.target_model_type == 'adv_target_model': model_name = self.model_path + '/adv_target_model_' + self.opts[ 'Adversary'] + '.pth' elif self.target_model_type == 'target_model': model_name = self.model_path + '/target_model.pth' else: print( 'target model type not in ["target_model","adv_target_model"], system will exit.' ) sys.exit() target_model.load_state_dict( torch.load(model_name, map_location=self.device)) "set equal_eval mode of train instead eval for lstm" if self.classifier_type == 'lstm': target_model = self.model_reset(target_model) target_model.train() elif self.classifier_type == 'cnn': target_model.eval() target_model.to(self.device) "set adversary" Adversary = self.opts['Adversary'] if self.mode == 'wf': fgsm_epsilon = 0.1 pgd_a = 0.051 elif self.mode == 'shs': fgsm_epsilon = 0.1 pgd_a = 0.01 if Adversary == 'GAN': pretrained_generator_path = self.model_path + '/adv_generator.pth' pretrained_G = models.Generator(self.gen_input_nc, self.input_nc).to(self.device) pretrained_G.load_state_dict( torch.load(pretrained_generator_path, map_location=self.device)) pretrained_G.eval() elif Adversary == 'FGSM': adversary = FGSM(self.mode, self.x_box_min, self.x_box_max, self.pert_box, epsilon=fgsm_epsilon) elif Adversary == 'DeepFool': adversary = DeepFool(self.mode, self.x_box_min, self.x_box_max, self.pert_box, num_classes=5) elif Adversary == 'PGD': adversary = LinfPGDAttack(self.mode, self.x_box_min, self.x_box_max, self.pert_box, k=5, a=pgd_a, random_start=False) "test on adversarial examples" num_correct = 0 correct_x = 0 total_case = 0 for i, data in enumerate(test_data, 0): test_x, test_y = data test_x, test_y = test_x.to(self.device), test_y.to(self.device) "prediction on original input x" pred_y = target_model(test_x) _, pred_y = torch.max(pred_y, 1) "prediction on adversarial x" if Adversary in ['FGSM', 'DeepFool', 'PGD']: adversary.model = target_model "use predicted label to prevent label leaking" adv_y, adv_x = adversary.perturbation(test_x, pred_y, self.opts['alpha']) # adv_y,adv_x = adversary.perturbation(test_x,test_y,self.opts['alpha']) elif Adversary == 'GAN': pert = pretrained_G(test_x) adv_x = utils_gan.get_advX_gan(test_x, pert, self.mode, self.pert_box, self.x_box_min, self.x_box_max, self.opts['alpha']) adv_y = torch.argmax(target_model(adv_x.to(self.device)), 1) num_correct += torch.sum(adv_y == test_y, 0) correct_x += (pred_y == test_y).sum() total_case += len(test_y) acc = float(num_correct.item()) / float(total_case) print('*' * 30) print('"{}" with {} against {}.'.format(self.mode, Adversary, self.target_model_type)) print('correct test after attack is {}'.format(num_correct.item())) print('total test instances is {}'.format(total_case)) print( 'accuracy of test after {} attack : correct/total= {:.5f}'.format( Adversary, acc)) print('success rate of the attack is : {}'.format(1 - acc)) print('accucary of the model without being attacked is {:.5f}'.format( float(correct_x) / float(total_case))) print('\n')